Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration
RAIRO. Analyse numérique, Tome 12 (1978) no. 2, pp. 173-202.
@article{M2AN_1978__12_2_173_0,
     author = {Wahlbin, L. B.},
     title = {Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration},
     journal = {RAIRO. Analyse num\'erique},
     pages = {173--202},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {12},
     number = {2},
     year = {1978},
     mrnumber = {502070},
     zbl = {0382.65057},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1978__12_2_173_0/}
}
TY  - JOUR
AU  - Wahlbin, L. B.
TI  - Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration
JO  - RAIRO. Analyse numérique
PY  - 1978
SP  - 173
EP  - 202
VL  - 12
IS  - 2
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1978__12_2_173_0/
LA  - en
ID  - M2AN_1978__12_2_173_0
ER  - 
%0 Journal Article
%A Wahlbin, L. B.
%T Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration
%J RAIRO. Analyse numérique
%D 1978
%P 173-202
%V 12
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1978__12_2_173_0/
%G en
%F M2AN_1978__12_2_173_0
Wahlbin, L. B. Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration. RAIRO. Analyse numérique, Tome 12 (1978) no. 2, pp. 173-202. http://archive.numdam.org/item/M2AN_1978__12_2_173_0/

1. S. Agmon, A. Douglis and L. Nirenberg, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. L, Comm. Pure Appl. Math., vol. 12, 1959, pp. 623-727. | MR | Zbl

2. Yu. M. Berezanskh and Ya. A. Roitberg, A Theorem on Homeomorphims and the Green's Function for General Elliptic Boundary Problems (in Russian), Ukrain. Math. Z., vol. 19, 1967, pp. 3-32 (English translation, Ukrain. Math. J., vol. 19, 1967, pp. 509-530). | MR | Zbl

3. L. Bers, F. John and M. Schechter, Partial Differential Equations, Interscience, New York, 1964. | MR | Zbl

4. J. H. Bramble and S. Hilbert, Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation, Numer. Math., vol. 16, 1971, pp. 362-369. | MR | Zbl

5. P. G. Ciarlet, Numerical Analysis of the Finite Element Method, Séminaire de Mathématiques supérieures, Presse de l'Université de Montréal, 1976. | MR | Zbl

6. P. G. Ciarlet and P.-A. Raviart, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., vol. 46, 1972, pp. 177-199. | MR | Zbl

7. P. G. Ciarlet and P.-A. Raviart, Interpolation Theory Over Curved Elements, with Applications to Finite Element Methods, Comput. Methods Appl. Mech.Engrg., vol. 1, 1972, pp. 217-249. | MR | Zbl

8. P. G. Ciarlet and P.-A. Raviart, The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods, The Mathematical Foundations of the Finite Element Method, A. K. Aziz, Ed., Academic Press, New York, 1973, pp. 409-474. | MR | Zbl

9. G. J. Fix, Effects of Quadrature Errors in Finite Element Approximation of Steady State, Eigenvalue and Parabolic Problems, The Mathematical Foundation of the Finite Element Method, A.K. Aziz, Ed., Academic Press, New York, 1973, pp. 525-556. | MR | Zbl

10. Yu. P. Krasovskii, An investigation of the Green's function (in Russian), Uspehi Mat. Nauk., vol. 20, 1965, pp. 267-268.

11. J. Necas, Les Méthodes directes en Théorie des Équations elliptiques, Masson, Paris, 1967. | MR

12. J. A. Nitshe, L∞-convergence for Finite Element Approximation, 2. Conference on Finite Eléments, Rennes, France, May 12-14, 1975.

13. J. A. Nitsche and A. H. Schatz, Interior Estimates for Ritz-Galerkin Methods, Math. Comput., vol. 28, 1974, pp. 937-958. | MR | Zbl

14. A. H. Schatz, An Observation Concerning Ritz-Galerkin Methods with Indefinite Bilinear Forms, Math. Comput., vol. 28, 1974, pp. 959-962. | MR | Zbl

15. A. H. Schatz and L. B. Wahlbin, Interior Maximum Norm Estimates for Finite Element Methods, Math. Comput., vol 31, 1977, pp. 414-442. | MR | Zbl

16. A. H. Schatz and L. B. Wahlbin, Maximum Norm Estimates in the Finite Element Method on Plane Polygonal domains, Parti, Math. Comput. (to appear). | Zbl

17. R. Scott, Optimal L∞ Estimates for the Finite Element Method on Irregular Meshes, Math. Comput., vol. 30, 1976, pp. 681-697. | MR | Zbl

18. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N. J., 1970. | MR | Zbl