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SUPERCONVERGEIMCE OF THE GRADIENT
OF FINITE ELEMENT SOLUTIONS (*)

by Pierre LESAINT (*) and Milos ZLAMAL (2)

Communiqué par P -A RAVIART

Abstract — Super convergence of the gradient of approximate solutions to second order elhptic
équations is analysed and justified for a large ciass of curved isoparametric quadrilatéral éléments

Résumé — On analyse et on justifie la super convergence du gradient des solutions approchées
obtenues lors de la résolution d'équations elliptiques du second ordre à Vaide d'éléments
isoparamétriques courbes de type quadrilatéral, de plusieurs types courants

1. INTRODUCTION

Superconvergence of the gradient of finite element solutions was observed by
engineers when curved isoparametric linear and quadratic éléments of the
Serendipity family were applied for stress computation at the so called Gaussian
points {see références introduced in [10]). In [9] and [10] the second of the
authors gave a justification of this phenomenon for some cases. [10] contains a
complete analysis for quadratic éléments of the Serendipity family. In this paper
we construct a large class of curved isoparametric quadrilatéral éléments of an
arbitrary degree n in each variable. We take a Dirichlet problem to a second
order elliptic équation as a model problem and we prove superconvergence of the
gradient at Gauss-Legendre points (called Gaussian points in the above
références). A relatively highest improvement of the convergence rate is achieved
when linear éléments are used. The average convergence rate of the gradient
is O (h) whereas at Gauss-Legendre points (in case of linear éléments these are
centroids of the quadrilatéral) the rate is O (h2). The best numerical results were
won when computation of the element stiffness matrices and of the right-hand
sides was carried out by the Gauss-Legendre product l x l formula even if
superconvergence is true for other formulas, too (see theorem 4.1).

(*) Reçu mai 1978
l1) Laboratoire de Calcul, Faculté des Sciences et des Techniques, route de Gray, Besançon
(2) Computing Center of the Technical Umversity m Brno, Brno, Czechoslovakia

R AI R O Analyse numérique/Numerical Analysis, 0399-0516/1979/139/$ 4 00
© Bordas-Dunod



140 P LESAINT,M ZLAMAL

There is a limitation of our results We need that the fimte element partitions
be n-strongly regular, in particular that (2 6) be true A sufficient condition
for (2 6) (even if not necessary, see remark 2 m [10]) is that the éléments are close
to parallelograms Numerical results mdicate convmcmgly in case of lmea**
éléments the same what indicated numerical results won by quadratic éléments
{see [10], section 6) superconvergence does not set m if the condition (2 6) is not
satisfied Nevertheless we thmk that superconvergence of the gradient has a
considérable practical importance, especially when lmear éléments are used
mside the given domain and quadratic éléments are applied along the boundary
if necessary The mner éléments can often be chosen to be almost parallelograms
whereas along the boundary a better approximation by quadratic éléments
guarantees the convergence rate O (h2) even if the éléments are arbitrary convex
quadnlaterals Computing the gradient at Gauss-Legendre points and
interpolating it to mternal nodes (m a similar way as proposed in [10], section 6)
we can expect the convergence rate O (h2) at all nodes The same situation is
expected in three dimensions

2. PRELIMINARIES

Let Q be a bounded domain inR2 with a sufficiently smooth boundary F We
consider the Dinchlet problem

Au=f(x), VxeQ, w|r = 0,

d (2 1)

hère x = {xlf x2) Let us remark at this point that we could add a term aou
with a o ^0 in the définition (2 1) of the operator Au All that follows applies
equally well to this case, with a straightforward supplementary analysis
To (2 1) there is associated the bilmear functional

Q ( j - 1 VXi VXj

We assume that the coefficients are Lipschitz contmuous on Q and that

2 2

alJ(x) = aJl(x)
(2 3)

Q, ot0 = const > 0

Hence a(u, v) is H J (Q)-elhptic

i j = i

VieQ, ot0 = const >0

R A I R O Analyse numerique/Nuraencal Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 141

The weak solution of the problem (2.1) is a function ue ï ï J (Q) which satisfies

a(u, u) = ( ƒ v)0 n , Vi?eHà(fi). (2.4)

We are using the usual notation for the Sobolev spaces

Hm(Q)={ueL2(O), D aueL 2 (Q) , V |oc |^m}, m = 0, 1, . . .

Hj(fi) = {ueHHQ), «|r = 0 } .

The norm in i/m(Q) is denoted by ||.||m n and defined by

| | M I U Q = { YJ I I ^ H U 2 ^ ) }

the inner product in Hm(Q) is denoted by ( . , .)m n . Often we shall use the

seminorms , , ,

dmu

o a

dmu

o a

1/2

To construct the fmite element space Vh in which the approximate solution wül
lie let us cover Q by curved ïsoparametric quadrilatéral éléments defined as
follows: We consider the points { sk, st} JJ51 = 0 where s0 = — 1, sn = 1 and
sk (fc = 1, . . . , n — 1) are zéros of P'n (s) (by P„ we dénote the Legendre polynomial
of degree n). The numbers sk(fc = 0, . . . , n) are points of Lobatto formulas
{see [4]) and they belong to the interval [ - 1 , 1], We call the points { sk, s/ }2, i = 0

nodes of the square K : — l ^ £ ( ^ l , i = l , 2 . We also use thejiotation â7 for the
nodes so that {a3 Y"il)2 is the set of all nodes. We dénote by P(n) the class of
polynomials of degree ^ n in the variables £ t , £,2 and by g(n) the class of
polynomials of degree ^ n in each variable ^ and \2. Now any polynomial v
from Q(n) is uniquely determined by its values v3 at âj. Let namely v{â3) = 0,
7 = 1, . . . , (n +1)2 . The function t5(^i, s() is a polynomial of degree not greater
than nandi t vanishesfor ^i=s f c , k = 0, . . . , n.Therefore v(^lt Sj) = O. Similarly

wefind i3(5fc, ^2) = 0. Therefore u( *2) is divisible by J~J ( ^ — ;

is a polynomial of degree n-\-1 in each variable, hence i; must vanish identically
which proves the unisolvability of the Lagrange interpolation problem v {â3) = v3,
J = l, . . . , ( n + l)2 . Let Njil,!, ^ 2 ) e ô ( " ) ^e basic fonctions, i.e. N3(âl) = d3.
Consider (n +1)2 points a ; = {x{, x^) in the xx, x2-plane lying in Q or on F and
the mapping FK : K^> R2 defmed by

ï = l , 2. (2.5)
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142 P. LESAINT,M. ZLAMAL

If (2.5) maps the square K one-to-one on a closed domain K lying in the Xi, x2-
plane we call K a curved quadrilatéral element. The points a} are nodes of this
element.

We "cover Q" by such éléments and we suppose that every partition of Q by
these éléments is a n-strongly regular partition. By a /c-strongly regular partition
we understand a partition with the foliowing properties:

(a) for every element the mapping (2.5) is a Ck+1-diffeomorphism [in
particular, (2.5) is invertible];

(b) to every element K there is associated a positive parameter hK and the
mapping (2.5) is such that on K:

l ^ x f t ë i , ^ ) ! ^ / ^ ! , V|ot|^fc+1, i = l ,2 , (2.6)

c^h2
KS\fK&i,U\Sc2h

2
K. (2.7)

Hère </xfëi> £2) *
s ̂ e Jacobian of (2.6) and clt c2 are positive constants

independent on hK as well as on the chosen partition (they depend on n which we
do not dénote). If h is defined by

h= ma.xhK,K>
K

then the constants clt c2 are independent of h, too.

/c-strongly regular partitions were introduced in [10] and we refer the reader to
remarks 1, 2, 3 in [10]. In particular, we may assume that for every element K:

/jcfèi.É2)>0, V ^ e l (2.8)

We wilLconsider a family of «-strongly regular partitions of üsuch that h -• 0.
We dénote by Çlh the interior of the union of ail éléments of the given partition (in
gênerai, Qft^Q); Th is its boundary.

The functions v from the finite element space Vh are defined piecewise

v{xx, x2) = €[tf(x1, x2), tfixi, x2)]f v&lf ^2)= " i VjN&u Ç2). (2.9)

Hère ^l = ̂ f(x1, x2), î = l , 2, is the inverse mapping to (2.5) and the values v}

of v at nodes lying on F are equal zero, hence it is easy to see that y|rjb = 0.
Evidently,

Let us notice the special cases of Vh corresponding to n= 1, 2, 3. If n — 1 Qh

consists of straight quadrilaterals. The nodes are vertices of these quadrilaterals

RA Ï.R.O. Analyse munênque/Niuneiical Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 143

and the functions v are bilinear polynomials. If n = 2 the square K has 9 nodes.
These are vertices, midpoints of sides and the center of K. The polynomials v are
biquadratic polynomials with 9° of freedom (in [10] we considered an element
with 8° of freedom). If n = 3 the element has 16° of freedom. The nodes are points

{sk> si}k,i = o with Sx= —y/5/5, s2 = ̂ /5/5. The polynomials v are bicubic

polynomials.

To define the approximate solution of the problem (2.4) we proceed in a
similar way as in [3]. We extend the solution u and the coefficients aX} according
to Calderon's extension theorem (see Necas [7], p. 80) to R2 and dénote this
extensions by u and alJt respectively. We also extend ƒ as follows:

Dénote by a(w, v) the bilinear functional

a(w Ï r v ~ ô w dv A

Due to v |Th = 0 we get for any v e Vh by Green's theorem a(u, v) = (J, v)Q Ofc. For
simplicity of writing we will leave out the sign ~ and write

(2.10)

This will not cause any confusion in the estimâtes carried out later. All constants
will depend on | |M||B+3 ah> This norm is bounded, according to Calderon's
theorem, by ||w||n+3 n- If the extensions of the coefficients are continuous the
matrix [alJ{x)}lJ=1 is positive definite also in a greater domain Q°=>Q.
As Oh<=Q° for h sufficiently small it holds under these conditions

£ a^x^^a, X tf, VxeQh, (2.11)

where a1 is a positive constant independent on h.
In gênerai, numerical intégration is the usual and only possible way how to

compute the bilinear functional a(u, v). To this end let us consider quadrature
formulas / (<p) for the square K of the form

X (2.12)
r

vol 13, n° 2, 1979



144 P LESAINTSM ZLAMAL

We make the assumption that the points Qr of the formula belong to the interior
of K or are nodes of K and that the coefficients Ar are positive (the last
assumption is not necessary but it yields simpler proofs) Any such formula
mduces a quadrature formula îK (cp) for the element K of the form

and
ƒ K ((p) = ƒ {J? K cp) (2 13)

Here we use the following notation [m agreement with the notation m (2 9)] for

any function g defined on Qh #(Çi, £>2) = g[xi(£>i> ^2) *fféi* ^2)] o n every K

Expressmg a (w, v) and ( ƒ v)0 Qh as sums of intégrais over the éléments K we get
the approximate values ah(w, v) and ( ƒ v)h of a{w, v) and ( f, v)0 Qh, respectively

14)

Our assumption concernmg the pomts Qr guarantees that, at least for h
sufficiently small, we do not need for the computation of ah(w, v) and (f, v\
values of data at other pomts than at points from O Now the approximate
solution uh e Vh is defined formally by

h (2 15)

All quadratureJbrmuLas^considered in the_sequel are such that ah(v^ is a
positive defimte quadratic form on Vh This implies existence and unicity of uh

3. SOME LEMMAS

In what follows we dénote by C a genene positive constant not necessanly the
same m any two places which does not depend on hK, h and on some functions (it
dépends on n) It will be clear from the context of which functions the constant is
independent

LEMMA 3 1 We have for any veQ{n)

\ (3 1)

0 (3 2)

R A I R O Analyse numérique/Numencal Analysis
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LEMMA 3 2 We have for any geHl(Qh)

\g\l K^Chl^x llgflL K, Orgi^rc+l (3 3)

LEMMA 3 3 (special case of Bramble-Hilbert lemma on lmear functionais,
see [1]) Let se be any subset of the set of multi-indices of length fc+1 which
contants the indices of theform (fc+1, 0), (0, fc+1) The set of polynomials such
that Dap = 0 for ail a e sé will be denoted by P^ Letfbe a continuons hnear

functional onHk+1(Q) satisfying / ( p ) = 0, V p e P ^ Then there is a
constant c^c(k, Cl) such that

l(Q) (3 4)

Two exùeme cases of se are the set of ail multundices of length fc+1 and the set
(fc + 1, 0) (0 fc+1) Then P^=-P{k) and P^ = 6(fc), respectwely and (3 4) has
the farm

(3 5)

(3 6)

The Bramble-Hilbert lemma allows to estimate the interpolation error for a
given function The interpolate <p7 of a function <f> defined on K is the

polynomial £ <pj Nj (î^, £,2) where <pj are values of <p at the nodes â} of K The

interpolate gY of a function g defined on Qh is the function which is on each

element K a Qh of the form (2 9) with v mterpolating g

LEMMA 3 4 If §eHn+i (K) then

Also
if n> l ,

K} if * = '

The proofs of lemmas 3 1, 3 2 and 3 4 differ little from proofs of the
correspond lemmas of [10] with one différence To prove the second part
of (3 7') one must use lemma 3 7 mtroduced later

fWe shall need estimâtes of the error functional E (q>) = <pd^ — I (<f>) Such

estimâtes follow immediately from (3 6)

vol 13 n° 2 1979



146 P LESAINT.M ZLAMAL

LEMMA 3 5 Let /(<p) be a formula which intégrâtes exactly all polynomials
front £ (fc) If (p e Hk+1 (K) then

|E((p) |gC[cp]k + 1* (3 8)

LEMMA 3 6 Let the fini te element partitions be O-strongly regular and the
formula I(<p) be either the Lobatto product n + 1 x n + 1 formula or a formula
integrating exactly the class Q (2 n) Then { ah(v, u)}1/2 is a norm on Vh equivalent
umformly with respect to h to the norm v t Qft) î e there is a constant c4

independent of h such that

\ \ h \ \ h h, (3 9)

for h suffiently small

Proof From positivity of the coefficients Âr (Lobatto formulas have positive
coefficients) and from (2 11) we easily get (see part b) of the proof of lemma 3 6
in [10])

ç (<tH!i) (3io)

(3 9) follows if we prove

î(mc\v\2
lK (3 n)

If ƒ intégrâtes exactly the class Q (2 n) then / (\fr) = | v \ \ & So let / be the Lobatto
formula The term | v 11 K is a norm over the finite dimensional factor
space Q(2n)/P(0) When we show that from /(vj/) = O ît follows ï; = const,
{ J(\j))]1/2 is also such a norm and (3 9) is true

From 7(\fr) = 0 ît follows

for ^ k = 0 . , n

As dv/ô^i is a polynomial of £j of degree not greater than n — 1 it follows

— =0 for t,e[-l,ll

Further, dv(^lf î;2)/dÇi is a polynomial of £2 of degree not greater than n As it
vamshes for %2= sh / = 0, , n it follows dv/d^ = 0 on K Similarly,

= 0 on X, thus i; =

REMARK 1 The Gauss-Legendre product nxn formula is exact for ail
polynomials from Q (2 n — 1) as is the Lobatto product n + 1 x n — 1 formula

R A I R O Analyse numenque/Numencal Analysis
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Gauss-Legendre formula has less points, namely n2, and this is why
{a$(v, v)}112 where a%(v, v) is the approximate value of a(v, v) computed by
means of Gauss-Legendre n x n formula is not equivalent umformly with respect
to h to the norm | v | j Qk It was noticed by Girault [5] for n = 1 Nevertheless, it is
a norm on Vh, too To prove it we remark first that (3 10) where Gauss-
Legendre nxn formula /* (<p) stands for î (q>) is agam valid Hence it is sufficient

to prove that from £ J*(\j/) = O it foliows v = Q on Qh Dénote by
K

tk(k = l, , n) the zéros of Pn The points of the formula /* are {(tk, ti)}kfi=1

As dv{i3l, ti)/9£i vanishes for %i = tk, fc = l, , n and it is a polynomial of
degree not greater than n—1 it vanishes identically As ôv{t>1, Ç2)/d£i is a
polynomial of the variable ^2 of degree not greater than n vanishing for

^2 = M*=1> > n) it must be of the form oc^) J~[ (£2 —0» hence

n n

ö = a*(^1) f] (^2-0 Similarly, i5-p*(^2) f] Ki-0» t h u s

i ^ i i = i

1 = 1 1 = 1

which can be true only if these ratios are constant It follows

v = c I I fêi~0(^2~0 c = const Take ûrst a boundary element i; vanishes
i = i

on a part of the boundary of K, therefore c = 0 and r = (L_We can repeat-the
reasoning for neighbors of boundary éléments and prove successively that v = 0
onQ,

LEMMA 3 7 Let f be a continuons hnear functional on Hk+r+1{Q)
satisfyingf(p) = O, VpeP(k) and*ipeQ(k), respectively Then there is a
constant c = c(k, r, Çï) such that

k + r+l

\f{v)\£c\\f\\i+r+ia £ \v\sn

and

\f(v)\^c
k + r+l

*+r+ia

VveHk+r+1(Q),

(3 12)

(3 13)

respectively

The proof is given in [6] (lemma 3, p 8), nevertheless we shall repeat it We shall
need the followmg

vol 13 n° 2 1979



148 P LESAINTSM ZLAMAL

Tartar's lemma Let E be a Banach space and Elt E2 be two normed spaces
We consider two lmear contmuous operators Ate^(Et Et), i= 1, 2 such that

(i) v -> l l^i u | | £ i + ||^42^||£2
 1S a norm on E equivalent to ||u ||£,

(ii) Ax is compact

Let P be the kernel of the operator A2 Then the mapping v -> || A2 v is a
norm on the quotient space E/P equivalent to the usual quotient norm

peP

Tartar's lemma (private communication) was not pubhshed A different proof
of a shghtly more gênerai lemma can be found in Brezzi, Marim [2] (p 25,
lemma 4 1)

Proof of lemma 3 7 We apply Tartar's lemma with E = Hk + r+1 (£2),
£1=H f c(Q), E2 = (L2(Q))N where N dénotes the number of all denvatives of
order s where /c + l^s^g/c + r-hl Ax is the identity operator and the
operator A2 is defined as follows for each function veHk + r+1 (Q) A2 v dénotes
the set of all derivatives of v of order 5, / c + l ^ s ^ / c + r + 1 ^ is a compact
operator from Hk + r+i(Q) into Hk(Q) The kernel of A2 is the set P(k) The
norm on E is equivalent to \\Al u||£l +1|^2^| |E2 By Tartar's lemma the

k + r+l

seminorm £ | u | s n is a norm on the quotient space Hk + r+1 (Q)/P(k)
r~k+ 1

equivalent to the usual quotient norm inf ||u + p||,,+, + ! fi
peP(k)

Now let /e(ifk+r + 1(Q))* be such that / (p) = 0, VpeP(/c) We have
f(v) = f(v + p),VpeP{k). hence

| / M | ^ | | / | | f + r + i n i n f ||i> + p | | k + r + i 0 ^

The proof of (3 13) is quite similar

4. LOBATTO AND MORE ACCURATE FORMULAS

We introducé the norm

"{E |
R A I R O Analyse numenque/Numerical Analysis
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where d(v, v) is the quadratic functional associated to the Laplace operator

and d*(v, v) is îts approximate value computed by means of Gauss-
Legendre nxn formula ƒ*(<p) Accordmg to remark l\v\h is a norm on Vh

Notice that the sum appearmg on the nght-hand side of (4 1) is a sum over
Gauss-Legendre points, 1 e over all points which are maps of the points
{(tk, t()}g I = 1 We will dénote the set of all Gauss-Legendre points by G

The space Q (n) contains the space P(n), however ît does not contain P(n -h 1)
Therefore (see Ciarlet and Raviart [3]) the best estimate of the error u — uhm the
Hx -norm is

||«-«*||i nna^Cft" (4 2)

We shall prove that \u~uh\hSChtl+1 and this is the reason that we speak about
superconvergence In fact, let us dénote by NG the number of all Gauss-Legendre
points and by e (P) the error of the gradient

1
fol /

We have

K JK K JK

therefore NG^Ch 2 By the Cauchy mequahty we prove easily under the
additional assumption

- ^ 9 t Ö = const>0, ~h = mmhK, (4 3)
h K

that

PeG
(4 4)

Hence ît follows that the anthmetic mean of errors of the gradient at Gauss-
Legendre points is O(Jirt+1)

In this section we prove superconvergence m case that the évaluation of
a(w,v) and (ƒ, v)QÇii is done either exactly or there is used an intégration
formula / which intégrâtes exactly the class Q (2 n) or î is the Lobatto product
n + l x n + 1 formula [this intégrâtes exactly Q(2n— 1) but not Q{2n)] We
assume that the fimte element partitions are n-strongly regular Numencal
results mdicate convmcmgly (see also [10], section 6) that superconvergence

vol 13 n°2 1979



150 P LESAINT.M ZLAMAL

does not set in if the condition (2 6) is not satisfied Condition (2 6) with k = n is
just charactenstic for n-strong regulanty

We shall need one more property of the fimte element partitions, namely that
for any two adjacent éléments K, K' we have

dxK dxK dxK dxK

'K1- = l, 2 (4 5)

This condition is satisfied if e g the meshes consist of éléments which differ httle
from parallelograms having sides nearly parallel to sides of lts neighbors We
refer the reader to remark 6 in [10]

THEOREM 4 1 Let the fimte element partitions be n-strongly regular and
satisfy (4 5) Letthefunctionala(w, v)and(f, v)0 Qhbe evaluated either exactly or
by means of a formula which intégrâtes exactly the class Q (2 n) or by means of the
Lobatto product n - f l x n + 1 formula Finally, let the solution u belong to
H" + 3(Q) and, in case ofnumencal intégration, let the coefficients atJ belong to
Cn + 2(Q) Then we have

\u-uh\aCh»+i\\u\\n+3Çl (4 6)

Proof Subtracting ah (uj, v) (uj is the interpolate of u) from both sides of (2 15)
we have

ah(uh-uif v) = (f v)h-ah{uIt v) = (f, v)h-ah(u, v) + ah(u-uï, v)

Hence
ah(uj-uh, v) = ah{u, v)-{Au,v)h + ah{uI-u, v), VveVh (4 7)

(4 7) is true also m case of exact évaluation if instead of ah (u, v) and (A u v)h we
set a(u, v) and (Au, v)öQh Suppose that we prove

\ah(u,v)-(Au,v)„\ïCh"+1\\u\\n+iQ\v\ia) (4 8)
V Vh\ak(u-u„v)\£Ch'+1\\ul+2a\v\iOt rV Vh (4 9)

Putting v = Uj — uh e Vh in (4 7) and using (3 9) we get

\u,-uk\lOt£CW+1\\u\l+3Q (4 10)

The quadratic functional d%(v, v) = \v\% satisfies also an inequahty of the form
(3 9), i e

Therefore by (4 10)

\u,-uh\h^Ch"+l\\u\l+ia (4 11)

R A I R O Analyse numerique/Numencal Analysis
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It is sufficient to prove

| W - W i | ^ C ^ + 1 | |M | |n + 2 ) a (4.12)

and (4.6) îollows by the triangle inequàlity.

Proofof(4.S):lîa(u, vj&nd (Au, v)0Qh = (f, v)0 tÇih are evaluated exactly we have
nothing to prove. So let at this moment î dénote any quadrature formula of the
form (2.12) and let IK be the induced formula (2.13). Using the symmetry a,, = aJt

we have

H E M ££(£)D-(413)

We estimate only the sum of terms with i=j— 1. The other three sums can be
estimated in the same way. Settmg <5 = aK{dulôxx) we have to estimate
^ . Using the transformation (2.9) we get

[M- *•»
Again we restrict ourselves to estimation of the first sum which appears on the
right-hand side of (4.14), i. e. :

First let / be a formula which intégrâtes exactly the class Q (2 n). Setting

dxK
2 „ dxK

2„ dû
.* = £2 ô _£2 ô l l £_ f ( 4 1 6 )

we have

We could subtract the sum £ [(êKv) (1, ^2)~(zKv) ( - 1 , ^ 2 ) ] ^ 2 from 5
JÎ J - i

because it is equal to zero. In fact, in this sum they appear either intégrais over
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element sides which lie on F,, and as v\Th = 0 these are equal to zero Or they
appear couples of intégrais over a common side of two adjacent éléments taken
in opposite directions with mtegrands which are the same The functions a as
well as v assume namely the same values on such side (they are contmuous on Qh),
also x\ and hence dx\/d^2 and consequently the function z defmed on each K by
zK = zK assume the same values on such side

Set

F(z, v) = l(-^[z6\\- f [(zv)(l, Ç 2)-( i0)(- l f Ç2)]dÇ2, (4 17)

so that
£*, v) (4 18)

L E M M A 4 1 We have for zeHn + 2 (K)

\F(z,v)\SC{\v\lK[ê)n+,K + \\v\\oK^l+2K} (4 19)

Proof We express F(z, v) as follows

F(z, v) = F(z, v-v°) + F{z, v°), v° = v(0, 0) (4 20)

Consider first n > l z -> F(z, v — v°) is a contmuous lmear functional on
Hn + 1(X)boundedby

If z e g (n) then zv e Q (2 n) and

- 1

Accordmg to (3 6)

\F(z,v-vo)\SC\v\lK[z]n+1f>, n>\ (4 21)

Further, z-*P{z, v°) is a contmuous lmear functional on Hn + 2(K) bounded by
C| | i ï | | 0 K | | z | | n + 2 X if n}tl By the same argument it follows
F{z, v°) = Q, VzeÖ(«+l ) Therefore by (3 6)

|/(z,fi°)|^C||fi | |0K[z]B+2JC( n^l (4 22)

For n> 1(4 19) follows from (4 20), (4 21) and (4 22) If w=l then F (f, C — ö°) is
a contmuous lmear functional on H3(K) bounded by C|t5|1 K | |z | |3^ and
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vanishing for zeQ(1). We use (3.13) and get

,^} ^ (4.23)

For n = 1 (4.19) follows from (4.20), (4.22), (4.23) and (3.1).

Now let the intégration formula be the Lobatto product n + 1 x n + 1 formula
denoted by jf°. As before we must estimate

Hère J° is the Lobatto n +1 formula over the interval [ — 1, 1]. We could subtract

the sum £ J° ([(fK v) (1, £2) — ( ^ *>) ( — 1 > £2)]) because it is equal to zero from the
K

same reason as above. Set

F {z,v) = Î0 ( ~ [zv]\ - J° ((zv) (1 ,$2) - (zv) (-1,U)> (4.24)

Again(4.18)holds.

LEMMA 4.2: (4.19) is true alsofor P defined by (4.24).

Proof: The arguments are the same or similar to those above. Let us only show
that

F(z, v-v°) = 0, VzeQ(n). (4^25)
n n

J° is of the form J°(q>)= ^ k<P(Skl Then /°(<p)= X Vkît>i<f>(sk, Sil If

zeQ{n) the derivative (3/S^i)(zt?) is a polynomial of degree ^ 2 n - l of the
variable iil. As J ° intégrâtes exactly such polynomials we have

) - ( z 0 ) ( - l , s,)] =J° (P t i ) ( l

l

=J°

which proves (4.25).
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To finish the proof of (4.8) we return to (4.18) where F is defined either
by (4.17) or by (4.24). In both cases (4.19) is true. Thus by (3.3):

(4.26)

Dénote

then zK =

Using again Leibnitz formula we get

d'à

dû

b. Using Leibnitz formula we obtain
2 ôlâ

(4.27)

l

L
dl~râlx

^ II

In the last inequality we used the fact that

if r < n and
if or a 2 ^

From (4".27) and (Î.3) it follôws

In the same way we prove

As a matter of fact, in addition to (3.3) we must use the estimate

T+2ü
^ï1 d^2 0 K

(4.28)

(4.29)

(4.30)

if oc2=O, 1 or a t = 0 , 1 (4.31)

which follows from (3.3) and (4.28).
From (4.26), (4.29) and (4.30) we have

K\\u\\n+, ^
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u is, in fact, the extension û, and by Calderon's theorem

| | û | | B + 3 nh^C\\U\\n + 3 fl-

Further t ? | r =0 , therefore from Friedrich's inequahty (applied to a fixed
domain Qo > Qk so that the constant of the inequality does not depend on h) it
follows \\v\\i Qk^C\v\l flk, hence

\ \ ^ % \ \ t

which proves (4.8).

Proofof(4.9): 1) Set co = u - ut. Let ƒ (cp) dénote either the intégration formula
(i.e. a formula which intégrâtes exactly<2(2n) or the Lobatto product

x n + 1 formula) or let
h

Ôco dv

. Using (2.5) we get

5t3 \
dT) (4*32)

( ah((o, v) = a((£>, v) in case /(<p)= 9 ^ ^ ) . The coefficients^ are easy to

calculate by means of the coefficients atJ and the functions xf
explicit formulas are given in [10], équation (3.15). Dénote by b° the
values bl}{0, 0). Then

As al} are Lipschitz continuous and xf satisfy (2.6) for | a | ^ 2 we easily estimate
that &„-&°=O(*K) on each element K. By(3.7 /) | |©|| ïK-(jt)^C[û] I l+1 ^

if n>\. As î is of the form (2.12) or /(<pH

y r,î/r, ,n,8(b ÔV

J = 1 X

For n = l we get

ôi;

- (4-34)

(4.34')

2) It remains to estimate the first sum in (4.33). We must investigate
separately the case i—j and i^j. Consider the first case and take i=j=l. The
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functional f{û) = I ((dâ/d^) (dv/d^i)) is lmear and bounded on
Hn + 2(K) by C\v\, j t | |û| |B + 2 * [it follows from (3 7') and (3 2)]
It vamshes for û e Q (n) because œ = 0 It also vanishes for û = Ç5+1

because ôcb/ô^ = 0 If w = ̂ " 1 then by inspection we find

ncn

where c„ is the coefficient at £" of the Legendre polynomial P„(£i) Hence

Evidently, n - l ) , therefore

f 3© 3z5
ƒ (

As dv/d^x is a polynomial of degree ^n— 1 m {̂  and intégration with respect
to 2,! is done over the interval [— 1, l],f{u) vanishes, too So ƒ (u) vanishes for

By (3 4)

Ê«+2 II
•si 0 K

dn+2û

0 ^

ö^i3^5+ 1 +
0 K

8n+2Jl\
^t« + 2

and by (4 31), (3 3)

The same bound is true for i — j — 2 Hence

2

\v\iÂ (4 36)

(4 37)

i^C^HUnMin. (4 38)

3) Consider the case 1 = 1,7 = 2 and first let î be the formula which inté-

grâtes exactly Q(2n) or let /(<p)= cpd^ Dénote by L(û) the func-

R A I R O Analyse numenque/Numencal Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 157

tional

Express S as follows

S=

H(û) =

We have to estimate S -

Jï(û),

_ f1

J-i

(4 39)

We begin with estimation of £ b?2 Jï («) In this sum they appear either intégrais
K

over element sides which lie on Tk and these intégrais vanish Or they appear
couples of intégrais over a common side of two adjacent éléments taken in
opposite directions with ïntegrands which are the same The factors b\2 need not
be the same, however their différence is O (h) on basis of (4 5) (see remark 6
in [10]) Therefore using the mequahty

- i

we easily get by (3 2), (3 7'), (3 3)

, ±1)]
i te

(4 40)

To estimate the sum £ b?2 {£ (û) — H (M) } consider the functional

It is a continuous linear functional on Hn + 2(K) bounded
Evidently, it vamshes for ûeQ(n) and| n + 2

' - S 2 If M = y + 1 then[see(4 35)]

and

f
Cn J - 1 J - 1 ^ 2

Cn J - 1
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Exactly as before we prove (4 37) Consequently

\S\£Chr+1\\u\\.+2a\v\lOt (4 41)

Let the intégration formula be the Lobatto product n + l x n + 1 formula
denoted before by J° Now we choose

and we make use of the argument which we used to prove (4 25) Proceedmg as
before we get again the estimate (4 41), (4 33), (4 34), (4 34'), (4 38) and (4 41)
imply (4 9)

Proofof(4 12) Wesetagainco = u -w / Wefirstestimate f(û) = ô&(Qf)/ô^0

Let, say, j = l f(û) is a continuous lmear functional on Hn + 2(K) bounded
b y C | | w | | n + 2 / e It vanishes for ûeQ(n) and for« = ^2

+ 1 By (4 35) it also
vamshes for û = ̂ \+1 because the coordmates of Qf are zéros of Pn As before
[see the estimation oî f(û) = î((d&/d£>1){dv/d£)1))] it follows

From (4 1) we easily find out usmg (2 6) and (2 7) that

5. GAUSS-LEGENDRE INTEGRATION

In this section we consider the case that the évaluation of a (w, v) and ( f, v)Q Qh

is done by Gauss-Legendre product n x n formula which has the smallest
number of points among formulas mtegrating exactly the class Q(2n — 1) The
functional a$(v, v) is not bounded from below by C|^|?n j i umformly with
respect to h (see remark 1, section 3), nevertheless we prove that superconver-
gence of the gradient at Gauss-Legendre points sets in, too In fact, numencal
expenments show that we can expect results better than those won by Lobatto or
by more accurate formulas

Concernmg the fimte element partitions we do not need condition (4 5) We
needed this assumption to prove (4 9), but we did not need it to prove (4 12)
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and therefore we shall not need ît to prove (5.9). However, we assume that the
partitions are topologically equivalent to rectangular meshes in the following
sensé: If ak is a corner node (i. e. a node which is map of a corner of K) we call
neighbors of this node all corner nodes at such that ak and ai are endpoints of an
element side. A finite element partition will be called topologically equivalent to
a rectangular partition if its corner nodes can be numbered by two indices
*» J (i =j' — 0> 1 > . . . ) m. such a way that ail neighbors of a corner node al} belong
to the set {al+lj, ax-Xp alJ+1, al}-x). Let the numbering be such that for a
given ; we have O ^ m ^ i ^ M j and for a given i we have O^n^j^N^ Let

M = max MJt N = max Nlt &x = M~1, Ay = N~1.
J

In the sequel we assume that ail finite element partitions, besides being
topologically equivalent to rectangular partitions, are such that

(5.1)
, Ay)

where the constant c5 does not depend on h.

THEOREM 5.1: Let the finite element partitions be n-strongly regular,
topologically equivalent to rectangular partitions and satisfy the condition (5.1).
Let u e Hn + 3 (Q), al3 eCn + 2(Q).Finally, let the évaluation of a {w, v)and ( / v)0 Qh

be carried out by means of Gauss-Legendre product n xn formula. Then

| " -M*|^Ch-+ 1 jM| |B +3. n . (5.2)

Proof: (4.7) is true if instead of ah and ( ƒ, v)h we set ai and ( f v)%,
respectively. Hence

aî{uj-uht v) = at(u, v)-{Au, v% + at(us-u, v), VveVh. (5.3)

We prove later that

\ai(utv)-{Autv)i\^Cha+1\\u\\n+3Q\v\ht V w e ^ . (5.4)

From positivity of the coefficients of Gauss-Legendre formulas, from ellipticity
of the operator Au and from boundedness of its coefficients it follows

(5.5)

for any function z such that dz/8xt, i= 1, 2, exist at all Gauss-Legendre points.
Therefore by (4.12) and (5.5):

\ \ \ \ \ \ \ h l \fveVh. (5.6)

vol 13, n° 2, 1979



160 P. LESAINT,M. ZLAMAL

Setting v = Uj-uheVh in (5.3) we get by (5.4), (5,6) and by (5.5):

(5.2) follows by the triangle inequality.
Proof of"(5.4): Proceeding as in the proof of (4.8) we find out that we have to

estimate certain sums a prototype of which is

Dénote by vfc (k = 1, .. ., n) the coefficients of the one-dimensional Gauss-
Legendre formula. From the same reason as above

E t viK«)(i.O-(«)(-i^I)]=o.
K 1=1

Therefore the sum S can be written in the form

where

Êiz, v)= f v, t ^ J-(w)(«». *ù - î
1 = 1 jt= i Cçi / = i

LEMMA 5.1: We have for îsHn + 2 (X).

Proof: Let ic„_i ö be the interpolate of v in Q(n—i) determined uniquely
by values of v at the points (tk, tt), k, /= 1, . .. , n. We write

and estimate ƒ (z) = F (f, iî?), ü? = i; — TÎM _ i v. We consider ƒ (z) as a linear functional
on ffn+1 (K). It is a bounded functional because we easily get

+ 02(1,

Now

k = l \ ^Sl / k = l \ ^Sl

2
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This is true because if the nght-hand side vanishes then v (£1, tt) = const and the
left-hand side also vanishes Hence

f

If z e Q (n) then (3/3^) (z w) is a polynomial of degree g 2 n - 1 of the variable £
Therefore

F(z, u?)= X v, f' -J-(z i&) (^, ^ ) ^ i - t vt[(r w) (1, fO-(f w) ( - 1 , ^1 =
1=1 J-l ^Çl /=1

From (5 8) and the Bramble-Hilbert lemma ït follows

We estimate the other term, 1 e F(z,n„^1v) We have

|îit= Ê 0»v«P.-iô)(ï*. t«)]2 = S

As

we get

We prove m the same way as above that P(z, nn-xv) = 0 for zeQ(n + l) The
Bramble-Hilbert lemma gives

which together with (5 9) proves (5 7)

We continue m the proofof (5 4) We introducé the norm || ||fc on Fftdefined
by
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As JK^cl
2 h\ we get by (5 7), (4 29) and (4 30)

« + 2 K

(5 4) follows from the followmg discrete analog of Friednch's mequahty

LEMMA 5 2 Let the finite element partitions be O-strongly regular and
topologically equivalent to rectangular meshes in such a way that (5 1) is saüsfied
Then there is a constant c = c(Q) such that

£c\v\\h£ VveVh (5 10)

Proof We consider the unit square S1 0 < x 1 < l , 0 < x 2 < l and the mesh
{(iAx, j Ay)}i=0 M We dénote by Wh the space of trial functions

j = 0 N

defined on this mesh (of the same form as the functions v e Vhi of course, (2 5) is
the (hnear) mapping correspondmg to rectangular éléments of the mesh
{(iAx, j Ay)})and vamshingon dS1 To every ve Vh we associate a i o e ^ i n t h e
followmg way if K is an element of a given partition of Q then the numbering of
corner nodes by two indices associâtes a unique rectangular element R of S The
function w assumes at all nodes of K (not only at corner nodes) the same values
as the function v at the correspondmg nodes of K At all remammg nodes of Sx w
is equal to zero We remark that either w = v or w = 0 and w vanishes on all
éléments RczS% to which no 1Kr<=Qh is assocrated We have / K = (l/4) AxAjr
Therefore

= X Î*
K

v2) ^ £ /* (i2) = Ch2 X /*
K R

Dénote

w fc =

We have just proved

1/2

(5
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Suppose that we prove

i. e. that we prove (5.10) for a uniform rectangular mesh of the unit square S1.
Then

W J =

hence
w\h£C\v\h. (5.13)

(5.11)and(5.13)gives(5.1O).

Proofof(5.12): As w is a polynomial of degree rgn of the variable ^ it holds

max

Therefore

II» 112=4 ÊvJ1

Dénote by Ry the element with corners (iAxJAy), ((i +1) Ax, j A y), ((i +1) Ax,
0 + 1 ) Ay), (iAx, (jf +1)Ay). The mapping (2.5) has for RtJ the form

Let (gffc, gf/) be the map of (tk, t,) by this mapping. Then

iV-l M - l «

J = 0 i = 0 1 = 1 J IAX
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Applying the one-dimensional Friedrich's inequality we get

1 0

This proves (5.12).

6. NUMERICAL RESULTS. SERENDIPITY FAMILY

1) The following problem was solved (3) :

-Au= -\2x-2y+l6x2 + 54xy

+ 16y2-4x3-42x2y-12xy2-Uy3 in

The exact solutionis u{x, y)^xll-x) y(l-yXQ +2x + 7y). We used bilinear
polynomials (n = 1) and partitions consisting of square éléments with vertices
{(ih,jh)}M

lJ=0, M = h~\ h = l/4, 1/6, 1/8, 1/10. There were applied Gauss-
Legendre product l x l formula, Gauss-Legendre product 2 x 2 formula
(substituting exact intégration) and Lobatto product 2 x 2 formula (product
trapézoïdal rule). The norm | u — uh \h is denoted by EG and is equal in this case to

Hère NG = 4h~2 is the number of Gauss-Legendre points. Also the gradient at
vertices of square éléments was computed (the unique values of the gradient were

(3) The authors are indebted to M. Kovanl^ovâ who carned out all computations on the
computer DATAS A AB D21
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won by averagmg) and as a measure of the error the number

165

1/2

is taken The set Fconsists of all verhees of square éléments with exception of the
vertices of Q In table I Gauss-Legendre product l x l formula was used The
table shows on one hand the superconvergence and the big différence between
the magnitudes of EG and Ev, on the other handit shows that £Kgoes to zero just
fast as h

TABLE I

h

1/4

1/6

1/8

1/10

EG

0 055

0 025

0 014

0 0091

h~2EG

0 87

0 90

0 90

0 91

Ey

0 27

0 18

0 13

011

h-lEv

107

107

107

107

T a b l e I I c o m p a r e s t h e v a l u e s h 2 EG w h e n G a u s s - L e g e n d r e p r o d u c t l x l a n d
2 x 2 f o r m u l a a n d L o b a t t o p r o d u c t 2 x 2 f o r m u l a w e r e u s e d

TABLE II

h

1/4

1/6

1/8

1/10

h~2EG

G-Llxl

0 874

0 897

0 906

0 910

G - L 2 x 2

0 980

0 994

0 998

1001

Lob 2 x 2

1 462

1 504

1519

1 526

Evidently, Gauss-Legendre l x l formula gives the best values
2) In engineering applications the curved isoparametnc éléments of the

Serendipity family (see Zienkiewicz [8]) are mostly used The lmear éléments of
this family are the simplest éléments defined in this paper (n= 1) The quadratic
and cubic éléments are different from éléments mtroduced hère for n = 2 and
n = 3 Instead of complete biquadratic and bicubic polynomials, respectively,
there are used incomplete polynomials formed from these classes In the first case
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there is missing the term %f ̂ \ (as nodes we take eight nodes of the class Q (2)
lymg on the boundary of K), m the second there are missing the terms l^\ Ej,
£>! £>2> £>i 2̂» £i %\ (as nodes we take twelve nodes of the class Q (3) lymg on the
boundary of K) Super convergence of the gradient at Gauss-Legendre pomts can
be proved by the same technique which we used for polynomials from Q (n) The
proof is simpler because the functional ah(v, v) is bounded from below by
C | v | X Qk uniformly with respect to h even for Gauss-Legendre formulas
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