Superconvergence of the gradient of finite element solutions
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 13 (1979) no. 2, p. 139-166
@article{M2AN_1979__13_2_139_0,
     author = {Lesaint, Pierre and Zlamal, Milos},
     title = {Superconvergence of the gradient of finite element solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {13},
     number = {2},
     year = {1979},
     pages = {139-166},
     zbl = {0412.65051},
     mrnumber = {533879},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1979__13_2_139_0}
}
Lesaint, Pierre; Zlamal, Milos. Superconvergence of the gradient of finite element solutions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 13 (1979) no. 2, pp. 139-166. http://www.numdam.org/item/M2AN_1979__13_2_139_0/

1 J H Bramble and S R Hilbert Bounds foi a Class of Lineai Functionals withApplications to Hermite Interpolation, Numer Math Vol 16, 1971 pp 362-369 | MR 290524 | Zbl 0214.41405

2 F Brezzi and L D Marini, On theNumencal Solution of Plate Bending Problems byHybnd Methods R A I R O Vol 9 R-3, 1975, pp 5-50 | Numdam | Zbl 0322.73048

3 P G Ciarlet and P A Raviart, The Combined Effect of Curved Boundanes and Numencal Integration in Isoparametnc Finite Element Methods The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A K Aziz, Ed , Academic Press, New York, 1972, pp 409-474 | MR 421108 | Zbl 0262.65070

4 P Davis and P Rabinowitz, Methods of Numencal Integiation, Academic Press, New York, 1975 | MR 448814 | Zbl 0304.65016

5 V Girault, Theory of Finite Différence Methods on Irregular Networks S I AMJ Numer Anal, Vol 11, 1974, pp 260-282 | MR 431730 | Zbl 0296.65049

6 P Lesaint, Sur la resolution des systèmes hyperboliques du premier ordre pardesmethodes d'éléments finis, Thesis, Université Pierre-et-Marie-Cune, Pans, 1975

7 J Necas, Les methodes directes en theorie des équations elliptiques Academia, Prague, 1967 | MR 227584

8 O C Zienkiewicz, The Finite Element Method in Engineering Science, McGraw Hill London, 1972 | MR 315970 | Zbl 0237.73071

9 M Zlamal, Some Superconvergence Results in the Finite Element Method Mathematical Aspects of Finite Element Methods Springer Verlag, Berlin, Heidelberg, New York, 1977, pp 353-362 | MR 488863 | Zbl 0366.65050

10 M Zlamal, Superconveigence and Reduced Integration in the Finite Element Method, Math Comp (to appear) | MR 495027 | Zbl 0448.65068