High order accurate two-step approximations for hyperbolic equations
RAIRO. Analyse numérique, Tome 13 (1979) no. 3, pp. 201-226.
@article{M2AN_1979__13_3_201_0,
     author = {Baker, Garth A. and Dougalis, Vassilios A. and Serbin, Steven M.},
     title = {High order accurate two-step approximations for hyperbolic equations},
     journal = {RAIRO. Analyse num\'erique},
     pages = {201--226},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {13},
     number = {3},
     year = {1979},
     mrnumber = {543933},
     zbl = {0411.65057},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1979__13_3_201_0/}
}
TY  - JOUR
AU  - Baker, Garth A.
AU  - Dougalis, Vassilios A.
AU  - Serbin, Steven M.
TI  - High order accurate two-step approximations for hyperbolic equations
JO  - RAIRO. Analyse numérique
PY  - 1979
SP  - 201
EP  - 226
VL  - 13
IS  - 3
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1979__13_3_201_0/
LA  - en
ID  - M2AN_1979__13_3_201_0
ER  - 
%0 Journal Article
%A Baker, Garth A.
%A Dougalis, Vassilios A.
%A Serbin, Steven M.
%T High order accurate two-step approximations for hyperbolic equations
%J RAIRO. Analyse numérique
%D 1979
%P 201-226
%V 13
%N 3
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1979__13_3_201_0/
%G en
%F M2AN_1979__13_3_201_0
Baker, Garth A.; Dougalis, Vassilios A.; Serbin, Steven M. High order accurate two-step approximations for hyperbolic equations. RAIRO. Analyse numérique, Tome 13 (1979) no. 3, pp. 201-226. http://archive.numdam.org/item/M2AN_1979__13_3_201_0/

1. G. A. Baker and J. H. Bramble, Semidiscrete and Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations, Rapport Interne No. 22, Centre de Mathématiques appliquées, École polytechnique, Palaiseau, 1977.

2. G. A. Baker and V. A. Dougalis, On the L x -Convergence of Approximations for Hyperbolic Equations (to appear in Math. Comp.). | MR | Zbl

3. G. A. Baker, V. A. Dougalis and S. M. Serbin, An Approximation Theorem for Second-Order Evolution Equations (to appear in Numer. Math.). | MR | Zbl

4. J. H. Bramble, A. H. Schatz, V. Thomée and L. B. Wahlbin, Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations, S.I.A.M., J. Numer. Anal., Vol. 14, 1977, pp. 218-241. | MR | Zbl

5. M. Crouzeix, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, Thèse, Université Paris-VI, 1975.

6. V. A. Dougalis, Multistep Galerkin Methods for Hyperbolic Equations, Math.Comp., Vol. 33, 1979, pp, 563-584. | MR | Zbl

7. T. Dupont, L2-Estimates for Galerkin Methods for Second-Order Hyperbolic Equations, S.I.A.M., J. Numer. Anal., Vol. 1973, pp.880-889. | MR | Zbl

8. E. Gekeler, Linear Multistep Methods and Galerkin Procedures for Initial-Boundary Value Problems, S.I.A.M., J. Numer. Anal., Vol. 13, 1976, pp.536-548. | MR | Zbl

9. E. Gekeler, Galerkin-Runge-Kutta Methods and Hyperbolic Initial Boundary Value Problems, Computing, Vol. 18, 1977, pp.79-88. | MR | Zbl

10. S. M. Serbin, Rational Approximations of Trigonométric Matrices with Applications to Second-Order Systems of Differential Equations, Appl. Math, and Computation, Vol. 5, 1979, pp. 75-92. | MR | Zbl