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ERROR ESTIMATES FOR MIXED METHODS ()
by R. S. Faik (*) and J. E. OsBorN ()

Communicated by P. A. RAVIART

Abstract. — This paper presents abstract error estimates for mixed methods for the approximate
solution of elliptic boundary value problems. These estimates are then applied to obtain quasi-optimal
error estimates in the usual Sobolev norms for four examples: three mixed methods for the biharmonic
problem and a mixed method for second order elliptic problems.

Résumé. — Dans cet article, on présente des estimations d’erreur abstraites pour des méthodes
mixtes appliquées d larésolution approchée de problémes aux limites elliptiques. On applique ensuite ces
estimations afin d’obtenir des estimations d’erreur quasi-optimales, dans les normes de Sobolev
habituelles, dans quatre exemples : Trois méthodes mixtes pour le probléme biharmoniques, et une
méthode mixte pour les problémes elliptiques du second ordre.

1. INTRODUCTION

In [5] Brezzi studied Ritz-Galerkin approximation of saddle-point problems
arising in connection with Lagrange multipliers. These problems have the form:

Given fe V' and ge W', find (u, {)e V x W satisfying

a(u, v)+b(, ¥)=(, v), YveV, }
b(u, p)=(g,9), VoeW,

where V and W are real Hilbert spaces, and a(., .) and b(., .) are bounded
bilinear forms on V' x V and V x W, respectively.

Given finite dimensional spaces V,cV and W, c W, 0<h<]1, the Ritz-
Galerkin approximation (u,, V,) to (u, ) is the solution of the following
problem:

Find (u,, V,)e V, x W, satisfying

a(up, V)+b(v, Yp)=(f,v), VveV,, }
b(“cu (P)=(g, (P), V(PE Wh-
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250 R. S. FALK, J. E. OSBORN

The major assumptions in Brezzi’s results are

supr}'o“u”“ Yuez, and Vh, (1.3

vezZ,
where v,>0 is a constant independent of h and
Zy={veV,:b, ¢)=0,VoeW,},
and

supl%I—(p—)l— 2koll@|lw, VeeW, and Vh, (1.4
1 4

vel,

where ky>0 is independent of h.

Using (1.3) and (1.4) Brezzi proves the following error estimate for the
approximation method determined by (1.2):

lu—unlly+ || W=V, |y SClinf |lu—x|l, +iof |¥—n]z), VYh (1.5
XeV, new,
In [1, 2] Babuska studied Ritz-Galerkin approximation of general
variationally posed problems. The main result of [1, 2], applied to (1.1) and
(1.2), is that (1.5) holds provided

|a(u, ©)+b@, V) +bu, 9)| -
up 210 (|[ull, + [W],),
(v.wseV:JxW. ol + e llw olelly+ ¥ (1.6)

V(u, Y)eV,xW, and Vh,

where t,>0 is independent of A.

It is clear from [1, 2, 5] that (1.3) and (1.4) hold if and only if (1.6) holds. (1. 3)-
(1.4) or, equivalently, (1.6) is referred to as the stability condition for this
approximation method.

The results of [1, 2, 5] can be viewed as a strategy for analyzing these
approximation methods: the approximation method is characterized by certain
bilinear forms, norms (spaces), and families of finite dimensional approximating
spaces, and if the method can be shown to be stable with respect to the chosen
norms, then the error estimates in these norms follow in a simple manner
provided the bilinear forms are bounded and the approximation properties of V,
and W, are known in these norms. These results can be used to analyze, for
example, certain hybrid methods for the biharmonic problem [5, 6] and the
stationary Stokes problem [10]. The results of [1, 2] have also been used to
analyze a variety of variationally posed problems that are not of form (1.1).
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ERROR ESTIMATES FOR MIXED METHODS 251

There are other problems of a similar nature, however, where attempts at
using the ideas of [1, 2, 5] were not entirely successful since not all of the abstract
hypotheses were satisfied: specifically the Brezzi condition (1. 3) or, equivalently,
the Babuska condition (1. 6), is not satisfied with the usual choice of norms,i.e.,
the approximation methods for these problems are not stable with respect to the
usual norms. This is the case, for example, in the analysis in [7] of the Hermann-
Miyoshi [14, 15, 19] mixed method for the biharmonic problem. In the analysis
of this method a natural choice for both || . ||, and || . |, is the 1st order Sobolev
norm; however this method is not stable with respect to this choice. As a result of
this difficulty, the error estimates obtained in [7] are not quasi-optimal. A similar
difficulty arises in the analysis of the Hermann-Johnson [14, 15, 16] and Ciarlet-
Raviart [9] mixed methods for the biharmonic problem. In later work of Scholz
[23] and Rannacher (21] quasi-optimal error estimates were obtained for the
mixed methods of Ciarlet-Raviart and Hermann-Miyoshi, although the
systematic approach of Brezzi and Babuska was abandoned.

In aforthcoming paper of Babuska, Osborn, and Pitk4ranta [3] quasi-optimal
error estimates for mixed methods for the biharmonic problem are derived by an
application of the results of Brezzi and Babugka. In this work a new family of
(mesh dependent) norms are introduced with respect to which the above
mentioned mixed methods (Ciarlet-Raviart, Hermann-Miyoshi, Hermann-
Johnson) are stable. Error estimates in these norms then follow directly from the
results of Brezzi and BabuSka, once the approximation properties of the
subspaces V', and W, have been determined in these new norms. Error estimates
in the more standard norms are then obtained by using the usual duality
argument.

It is the intent of this paper to provide an abstract approach to the analysis of
mixed methods which leads to quasi-optimal error estimates, uses only standard
norms, and is systematic. We shall assume that existence and uniqueness for the
continuous (infinite dimensional) problem has been established and develop an
abstract framework under which quasi-optimal error estimates can be derived
for a variety of examples which do not fit within the convergence theory of Brezzi
and Babuska using the usual norms.

Section 2 contains the abstract convergence results of the paper. In section 3
we present four examples previously analyzed in the literature and show how
error estimates can be derived from the theorems in section 2. Three of these
methods are mixed methods for the biharmonic problem and the fourth is a
mixed method for a second order problem analyzed by Raviart-
Thomas [22, 25].

It is interesting to note that in this last example the results of Brezzi and
Babuska apply with the choice of spaces used by Raviart-Thomas, but fail to
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252 R. S. FALK, J. E. OSBORN

yield quasi-optimal error estimates in all cases due to the way in which the
variables are tied together in the error estimates. In our analysis the error
estimates for the two variables are separated and quasi-optimal error estimates
are obtained. For the three mixed methods for the biharmonic problem that are
analyzed in section 3 the results of the present paper and those obtained in [3],
using different techniques, are the same. For additional results on mixed
methods see Oden [20]. Finally we note that some basic ideas in the analysis in
this paper are similar to those employed in Scholz {23, 24].

Throughout this paper, we shall use the Sobolev spaces W™ ?(Q), where Qis a
convex polygon in the plane, m is a nonnegative integer, and 1 <p < co. On these
spaces we have the seminorms and norms

Ivlm.,,,n=(L Iml};mwwdx)”"
follna=( [ lulzgmlouvwx)”".

When p=2, we denote W™ 2(Q) by H™(Q) and write

and

|”|m.2,n=|”|m,n
and

liolln.2.0=ll¢]ln.a-

We will further denote by W §: 7 (Q) the subspace of W' ?(Q) of functions that
vanish on I'=0Q and by HZ(Q) the subspace of H2(Q) of functions that vanish
together with their normal derivatives on I'. For m=1 and 2 we will also use the
spaces H™ ™ (Q)=[HF(Q)]’ [the dual space of H{ ()] with the norm on H™"(Q)
taken to be the usual dual norm. To {further simplify notation we often drop the
use of the subscript Q in the norm when the context is clear.

2. ABSTRACT RESULTS

Let ¥, W, and H be three real Banach spaces with norms ||. ||,., || . ||, and
|| - ||z respectively. We assume ¥'< H with a continuous imbedding. Let a(., .)
and b(., .) be continuous bilinear forms on H x H and V x W, respectively:

la@, v)| < |la]l - |ullallvlls,  Vu veH, 2.1
b W <|B]| el |Vl YueV, Vyew. 2.2)

R.A.LR.O. Analyse numérique/Numerical Analysis



ERROR ESTIMATES FOR MIXED METHODS 253

We consider the following problem, which we refer to as problem P:
Given feV' and ge W', find (u, Y)e V x W satisfying:

a(u, v)+b(v, V)=(f, v), YveV, (2.3)
b(ua (p)‘:(g’ (p), V(PEWa (24)

where (., .) denotes the pairing between ¥ and V' or W and W',

We shall be interested in this problem for a subclass of data, i.e., for (f, g)e D,
where D is a subclass of V' x W’. We shall assume that:

(H1) For (f, g)e D, P has a unique solution.
In the analysis of problem P we will also consider the adjoint problem:
Given de G', where G is a Banach space satisfying W< G with a continuous
imbedding, find (y, X)=(y4, As) € V x W satisfying
a(v, y)+b(v, A)=0, YveV, (2.5)
b(y, 9)=Wd, 9), - VoeW-: (2-6)

We shall assume that:
(H2) Problem (2.5)-(2.6) has a unique solution for each de G’.

Throughout this paper we shall be concerned with the problem of
approximating the solution (u, {) of P. Toward this end, we suppose we are given
finite dimensional spaces ¥V, ¥V and W, W. We then consider the following
approximate problem, which we refer to as problem P,:

Find (u,, ¥,)e V, x W, satisfying:
alun, V)+b(v, ¥u)=(f,0), Vovel,, 2.7
b(us, 9)=(9, ¢), VoeW, (2.8

We will then view u, as an approximation to u and s, as an approximation to V.
In this section we obtain estimates for u—u, and Yy —,,.

We now state several further assumptions which we will require in the proofs
of our main results.

(H3) There is a constant a>0 (« independent of h) such that

a(v, v)2allv||i, VeeZ,,

where Z,={veV,:b(v, 0)=0,Voe W,}.
(H4) S(h) is a number satisfying

loll, <SG |olla.  VYoeV

vol. 14, n°3, 1980



254 R. S. FALK, J. E. OSBORN
(HS) There is an operator n,: Y — V), satisfying
b(y—mn,y, 0)=0, VyeY and VoeeW,,
where Y =span({ y4 }seq » 4), (u, V) is the solution of problem P, and (y4, A,) is

the solution of (2.5)-(2.6) corresponding to de G'.

For the examples treated in section 3 the existence and uniqueness of the
approximate solution (u,, ) can be established in various ways. We now give a
proof based on the assumptions made above.

THEOREM 1: Assume that hypotheses (H2), (H3) and (HS) are valid. Then

problem P, has a unique solution.

Proof: Since V), and W, are finite dimensional, it suffices to show that if
(up, Urp)e V, x W, satisfies

a(u}n v)+b(v’ "l’h)=0v VUEV;', (2.9)
b(uy, 9)=0, VoeW,, (2.10)

then u, =V, =0. Choosing v=u,in (2.9) and ¢ = —V, in (2. 10) and adding the
equations, we get a(u,, u,)=0.

Noting from (2.10) that u,eZ, and using (H3) we have ||u,||, =0. Hence
uh=0.

Setting u, =0 in (2.9) we obtain:

b, V¥,)=0, YveV,. 2.11)
Now
(d, )
= e 2.12
¥l =Py 12

By (H2), for each de G’, there exists y € V such that for all pe W

(d’ <P)=b(J’d, (P)
Thus

(d, Vn)=b(ya, Va)=b(rnyqs, ¥s) [applying (HS)] =0 [using (2.11)].

Equation (2. 12) then implies {,=0.

Our main result in this section are theorems 2 and 3 which present abstract
estimates for the errors u—u, and Y —\,.

R.A.LR.O. Analyse numérique/Numerical Analysis
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THEOREM 2: Suppose hypotheses (H1)-(HS5) are valid and that (u, ) and (u,, ;)
are the respective solutions of problems P and P,. Then [with 1, defined by (HS5)],

1
lu—ualle s 20151 Sl

+(||a|| +o)||u—myully] forall e W, (2.13)
_and

Hu_u"”"é H“—"Thuny'|'E(Ecill

x(|B|SW]V—ollw+|lall|lu—nuu|lz] forall peW,. (2.14)
If in addition
(HS6) Z,<=Z,
where

Z={veV:b(v, 9)=0,VoeW},

then

||"—unlln§[HLZﬂ]IIu—nhu[IH (2.15)
and

h
||u—u,,HV§”u——n,,u”t,+wuu—nhu”,,. (2.16)

Proof: Using (2.3) we see that
a(nyu, ©)+b@, V)=a(u, v)+b @, V)+a(n,u—u, v)
=(f, v)+a(r,u—u,v), YveV,, (2.17)
and from (2.4) and (HS5) we see that
b(ryu, ¢)=(g, ¢), VoeW,. (2.18)
Subtracting (2.7) from (2.17) we find
a(myu—uy,, v)+b(v, Y—Y,)=a(n,u—u,v), YveV,, (2.19)
and subtracting (2.8) from (2. 18) we obtain:
b(r,u—u,, 0)=0, VoeW,. (2.20)

vol. 14, n°3, 1980



256 R. S. FALK, J. E. OSBORN
Choosing v=n,u—u, in (2.19) we have
a(myu—uy, Tau—uy)+bmuu—uy,, Y—Y,)=a(m,u—u, T u—u,)
Applying (2.20) we get
a(myu—uy,, Tyu—u,)=a(m,u—u, T,u—u,)
+b(u,—m,u, y—¢) forall peW,. (2.21)

Using (2.1), (2.2), (H3), (H4) and noting from (2.20) that n,u—u,eZ,, we
then obtain:

aflmpu—up|li < |afl - || mav—ulls | mau—ualla
+||bl|St) || un—mnu]ls ||V —|lw

and hence

1
Imau—wnll = Sl fu—myully + bl stllv=olu|

lor all e 1.

2.22)
Thus
e e e g L

= glglllblls(h)ll\lf—(pllw+(1|a|[ +a) || u—mpully)

for all o€ W,. This proves (2.13).
In order to prove (2.14) we f{irst note that

lu=ully S u=maull+ [ pully < lummyul,+ SOl eyl

(2.14) now follows from (2.22).
To prove (2.15) we observe that (2.20) together with Z,cZ implies that
b(rn,u—u,, @)=0, YoeW. (2.23)
Hence (2.21) simpilifies to
a(myu—up, Tpu—u,)=a(n,u—u, T,u—uy). (2.24)

Applying (2.1) and (H3) to (2.24) yields
[|7enu—us|lz < W%"”n,,u—u”,,. (2.25)
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(2.15) follows by the triangle inequality.
To establish (2.16) we write

lu=ually < flu=mpully + | mau—ul,

Sllu—myull, + S| myu—u,|ly [by (H4)

g||u—n,,u||V+S(h)@nu—n,,u||,, fusing  (2.25)].

CoroLLARY: Inequality (2.15) holds without assumption (H4).

THEOREM 3: (a) Suppose hypotheses (H1), (H2),(H3), and (HS) are valid and that
(u, V) and (u,, \,) are the respective solutions of problems P and P,. Then (with
(v4> Mg) and my, as defined in (H2) and (HS), respectively),

“""‘\I’h"G':sup{b(yd_nhyd; Y—o)+a(uy—u, Tyy,—ya)

deG’

+bu—u,, \y—n)}/||d|l¢ forall ¢, meW, (2.26)

(b) If in addition (H6) holds (Z,< Z), then
b(u—uy, Ag—n)=bu—myu, Ag—m), VneW, (2.27)

(¢) If we further have that:
(H7) Thereis an operator Z,: A — W, satisfying b(v, L,A—A)=0 forallveV,
and all\€ A, where A=span ({ A4 }scq > V), (4, V) is the solution of problem P,and
(y4, Mg) is the soiution of (2.5)-(2.6) corresponding to de G’, then

b(ya—mnya, Y—Zp¥)=d, Y =Z; ) (2.28)
and
bu—uy, Ag—Zyhg)=(g, Ag—Z s Ay). (2.29)

Proof: From (2.6) we have

ll\lf—wllc=§ug(d, V=¥ [[d]le: =supbGa ¥=¥/ || d]le- (2.30)

Subtraction of (2.7) from (2.3) and (2.8) from (2.4) yields

a(u—uy, v)+b(v, Y—V,)=0, YveV, (2.31)
and

bu—u,, n)=0, YneW,. (2.32)
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258 R. S. FALK, J. E. OSBORN
Now, combining (2. 5), (H5), (2.31), and (2.32) we obtain:

b(ya, V=Vn)=bya—mpya, Y—Vn)+bmrya, V—V4)
=b(ya—Tnys V—@)+a(uy—u, 1,4y
=b(a—mpya, V=) +ay—u, tpys—ya)+auy—u, ya)
=b(a—mpya, V=) +auy—u, Ty ys—ya)+bu—us )
=b(ya—myya, V— @) +alup—u, Tyya—ya)
+b(u—uy, A\g—m) for all o, neW,.

Substitution of this identity in (2.30) yields (2. 26).
If Z,=Z then
b(myu—uy, @)=0, VoeW [see(2.23) above]

and so (2.27) follows immediately.
Now, if in addition (H7) holds, then

b(ya—Trya, W—ZaW)=b (e, V=Z4 ¥)=Wd, Y—Z,¥) [by (2.6)].
and
bu—uy, Ag—ZyAg)=b(u, Aa—Ziha)=(9, Ai—Zpha)

Thus (2.28) and (2.29) are established.

RemARrk: Note that inequality (2.15) in theorem 2 and all the results of
theorem 3 hold without assumption (2.2). This observation is used in
subsection 3 c.

We end this section with several remarks on the hypotheses (H3)-(H7). We
assume here that V and W are Hilbert spaces.
1) It is clear that if

a@, v)=ve||v||7 for all veZ,, (2.33)

then hypotheses (1.3) in Brezzi’s theorem is valid. In the applications we
c?nsider in section 3, (2.33) is not true (with y, independent of k) but is valid
when ||v||, is replaced by ||v]|4. This accounts for (H3) [and (H4)).

2) Inhypotheses (HS5)-(H7)it appears that we are not making use of conditions
similar to (1.4). In fact, in applications the operator n, described in (H5) is often
constructed in order to verify (1.4). A more precise relationship is given below in

propositions 1 and 2. For further ideas in this direction, consult the work of
Fortin [11].
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ProposiTiON 1: Suppose

supﬂ)ﬁlgn—éko”@“w VoeW, and Vh, (2.34)
14

veV,
where ko >0. Then there is an operator n, .V — V, that satisfies

b(v—m,v, 9)=0, YveV and VoeW,
and

b
”nhu“,,§ ”k(,“ HUH,,, YveV.

Proof: Consider b (v, 9)on Z;, x W, where Zj, ={ve V,: vis V-orthogonal to
Z,}. We immediately see that

b(v,
sup Mékollwllm VoeW, -
ezl ol
and

sup |b(v, 9)|>0, VOs#veZ;.

eEW,

It thus follows from [1, 2] that for each v € V there is a unique n, v € Z;; satisfying

b(nhv, (P)=b(vy (P), V(PEW}!'
Furthermore,

lmavlh = B2 o,

This proves proposition 1.

We also note that it follows from [1, 2] that for each ¢ € ¥ there exists a unique
X, o€ W, satisfying

b(v, Z,0)=b(v, @), YveZ;.
Furthermore,

120z L2 ol

ProrosiTiON 2: Suppose

b(v, @)
sup LH‘Z]TT—'%"““’“W’ VoeW, 2.35)

eV

vol. 14, n°3, 1980



260 R. S. FALK, J. E. OSBORN

where k>0, and suppose there is an operator w,: V — V, satisfying

b(v—m,v, ¢)=0, YoeW,
and

|maollySCllvlly, VYoeV.
Then (2.34) holds.

Proof: Clearly we have
b, @) b, o)

S T, 2P ol
b, o) ol . k
— > R YoeW,,
WP LT, Tmol, 2C 0l YoeHs

i.e., (2.34) holds with k,=k/C.
Thus we see that (HS5) is closely related to (2.34), which is the same as (1.4).

3) Hypotheses (H6) and (H7) are also closed related as we see by the following
result.

ProrosiTiON 3: X,: W — W, as defined in remark 2, satisfies

b(v. Z,0)=h(v, O} YeeV,. (2.36)
ifund only if Z,c Z.

Proof: Suppose {2.36) holds. Let veZ;. Then

b(r, @)=b(v, Z,0)=0, YoeW,
i.e.,veZ. Thus Z, < Z.

Now suppose Z,< Z. Then, if ve Z; we have (2.36) by the definition of Z,,
and, if ve Z, we have (2.36) since both terms are zero. Since V,=Z,®Zj; we
obtain (2.36) for all ve V.

3. APPLICATIONS

In this section we apply the results of section 2 to several examples.

a)' Ciarlet-Raviart method
Consider the biharmonic problem
A*y=g in Q,
6_\1; (3.1)
on

V= =0 on I'=0Q,

R.A.LLR.O. Analyse numérique/Numerical Analysis
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where Q is a convex polygon and g is a given function. If ge H ~ % (Q) then there is
a unique solution y ¢ H2(Q) of (3. 1). In addition the following regularity result is
known for this problem: If ge H ~!(Q), then e H*(Q) n H3(Q) and there is a
constant C such that

IWls=Cllg]l-1, VYgeH Q). (3.2

Using the well-known correspondence between the biharmonic problem and the
Stokes problem, this regularity result can be deduced from the regularity result
for the Stokes problem proved in [17] (¢f. also [13]).

We now seek an approximation to the solution s of (3. 1) by a mixed method,
i.e., we introduce an auxiliary variable (u= — A\ for the method of this
subsection), write (3. 1) as a lower order system, cast this system in variational
form, and then consider the Ritz-Galerkin method corresponding to this
variational formulation. In particular, the mixed method we study will be based
on the following variational formulation of (3. 1), first considered by Glowinski
[12] and Mercier [18] and further developed by Ciarlet and Raviart [9]:

Given ge H 1 (Q), find (u, ¥)e H' (Q) x H}(Q) satisfying

J uvdx—f Vu-V{dx=0, VveH(Q),

y ? (3.3)

—J Vu-V(pdx:—J godx, VoeH}(Q).
o o

Using the regularity result (3. 2) it is not difficult to show (see theorem 1 of [9])
that if  is the solutipn to (3.1) and u= — AV, then (u, ) is a solution of (3. 3),
and if (4, ¥) is a solution of (3.3), then Y is a solution of (3.1) and u= —AV.

It is clear that (3.3) is an example of problem P of section 2 with

V=H'(Q), W=Hy(Q), H=L,(Q),
a(u, v)=j uvdx and b(u, \l/)=—J Vu-Virdx
o o

(and with g replaced by —g). Here the subclass D of data for which (H1) is
satisfied is given by D=0 x W', Since the form a is symmetric, the adjoint
problem (2.5), (2.6), with G= W =H }(Q), is the same as problem P and thus is
uniquely solvable for all de W'. Hence (H2) is satisfied. Using (3.2) we also have

[yall t+lIralls=Clld]l -y (3.4)

Next we discuss the finite dimensional subspaces used in the approximation
scheme. For 0<h< 1, let 1, be a triangulation of Q with triangles T of diameter
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less than or equal to h. We assume the family {1, } satisfies the minimal angle
condition, i.e., there is a constant o >0 such that

hT
max — =0, Vh,
Ter, Pr

where h;. is the diameter of T and p; is the diameter of the largest circle contained
in 7, and is quasi-uniform, i.e., there is a constant ©>0 such that

max hp
T

min h;
T

lIA

1, Yh.

For k=1 a fixed integer we define
Sy={veC°Q): v|,€P,, VTe1,}, (3.5)

where P, is the space of polynomials of degree k or less in the variables x, and x ,.
We then consider the approximate problem P, with V,=S, and
W,=8S,n H}(Q). Note that this scheme yields direct approximations to J and
u= — AV (the stream function and vorticity in hydrodynamical problems).

To apply our theorems we must check that hypotheses (H3)-(HS) are valid.
(H3) is clearly valid with «=1 and since our family of triangulations is quasi-
uniform, (H4) is satisfied with S(h)=C/h for some constant C. It remains to
check (HS). For ve H* (Q) define n, v by:

n,veVy,

J V(TE,,U)-V(de=j Vv.Vodx, VoeV,
Q Q

J nhvdx=J vdx, i.e.,
Q Q

let 7, v be the Neumann projection of v into V. Then (HS) is satisfied, and in
addition standard approximability results imply that if ve H"~%(Q), r2 3, then

lo—muol;=Ch o]y, }
j=0,1 and 1=ZI<min(k+1,r-2).

and

(3.6)

We are now ready to apply theorems 2 and 3. Suppose ye H"(Q), r=3 and
that k=2. Then, using (2.13), (3.6), and standard approximability results, we
have
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lu—unllo<C(h™" inf |[W—o | +]u—nsullo)

peW,
SCh r || +he 2] ulls-2)

gCh"ZH\[/Hs (since u=—AYy), (3.7)
where s=min (r, k+1).

From (2.14) we find in a similar fashion that
lu—unll = Ch2 v, (3.8)

where s=min (r, k+1).
Finally, from (2.1), (2.2), (2.26), (3.4), (3.7), and (3.8), we have

H‘]"“l’h” =C SUP {”ya nhYd“l inf "‘1’ (Pnl

eeW,
+||U—“h||o”,Vd—‘ﬂ?;.)’d”o"'“”-“h”l inf H)‘d_nlll}/“d”—l
neW,
=€ sup {[lyall BT [l Al

deH™ ' (Q)
el h? [ Aalls (4] o= ChH W] (329)
where s=min (r, k+1).
Since (3.7)-(3.9)are valid only for k=2, the methods of this paper do not yield
error estimates for the case k=1 in this example. For this case the reader is
referred to Scholz [24]. The estimates (3.7)-(3.9) improve on those in Ciarlet and

Raviart [9]. Scholz [23] obtained (3.7) under the assumption that I is smooth.
(3.7) and (3.9) were obtained by Babuska, Osborn, and Pitkédranta [3].

We remark that theorem 3 could also be used to obtain an error estimate for
| W —W4||o [by choosing G=L, ()} when e H*(Q). However in order to get
quasi-optimal results we would require the regularity result that de L, (Q)
implies A,e H*(Q), which is not valid on a convex polygon.

b) Hermann-Miyoshi method

We consider in this subsection another mixed method for the approximate
solution of (3.1). In this method the auxiliary variable is the vector of second
partial derivatives of .

Let
V={v=(;), 1<i,jS2 : v,,=vy, v;;€e H (Q)}
(with the usual product norm), and
W=H}(Q).
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Then the mixed method we study will be based on the following variational
formulation of (3. 1).

Given ge H ™! (Q), find (u, ) e ¥V x W satisfying

2 2 dv,, oY
Py N gx=0
z=1 Lu,lv,]dxﬁ- Y L5X, o, x=0,

LJ , =1
VveV, (3.10)
2 ou,, 0¢ j
— T dx=— edx, VYoeeW.
szl J; ox, 0x, Qg

Using the regularity result (3. 2) it is not difficult to show that if  is a solution of
(3.1) and u=(u,,) is defined by u,,=0%\/dx,0x,, then (u, \) is a solution of
(3.10), and if (u, ) is a solution of (3.10), then Vs 1s a solution of (3.1) and
u,=0%\y/0x,0x,.

We easily observe that (3.10) 1s an example of problem P with ¥ and W as
above,

H={V=(Uu)’ lélsjéz . Vi2=V21, UUELZ(Q)}

(with the usual product norm),

2
a(u, v)= ) Ju,lvljdx
o

=1
and

b(u, )= i J duy N,

Ly=1 axl ax,

As in subsection 3 a the subclass D of data for which (H1) is satisfied is given by
D=0 x W', and since a is again symmetric (H2) is satisfied with G= W= H § (Q).

Letting S, be as defined in (3. 5), we then consider the approximate problem P,
with

Vh={v=(vu) V12=03y, UUES;,}
and

With this choice for the forms a and b and the spaces ¥, and W, problem P, now
describes the Hermann-Miyoshi method [14, 15, 19] for the approximation of the
bitharmonic problem. Note that with this method we obtain direct
approximations to \ and 8% \{/0x, 0x, (the displacement and the moments in
elasticity problems).
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As in subsection 3a we have hypothesis (H3) satisfied with a=1 and (H4)
satisfied with S (h)= C/h for some constant C. (HS) for this example is contained
in lemma 2 in [7]. Moreover, by a minor modification of the proof of lemma 2 in
[7} we obtain the existence of n, : V — V, satisfying:

b(v—m,v, 0)=0, VoeW,
and for ve VN [H'"2(Q)]*, r=3, the estimate
Iv—rv | SCH ] =01

and
1<i<min(k+1, r—2). (3.11)

We can now apply theorems 2 and 3 in the same way as in subsection 3 a.
Combining these theorems with (3.11) and standard approximability results, we
obtain for ye H"(Q), with r>3 and k=2:

[u—u, o= Ch=2 || ¥s (3.12)

[~y | S Ch=3 ||y, (3.13)
and

[ —Walls S CR [ |5 (3.14)

where s=min (r, k + 1). Estimates (3. 12)-(3. 14) improve those in Brezzi-Raviart
[7]. Rannacher [21] recently proved these estimates for k=2. Babuska, Osborn,
and Pitkidranta [3] proved (3.12) and (3.14).

¢) Hermann-Johnson method
We consider here a further mixed method for the solution of (3. 1) in which the
auxiliary variable is the vector of second partial derivatives of s, as in section 3 b.
Given a triangle Te 1, and a function v=(v;;) with v;;e H'(T'), 1 £i,j<2,and
Uy, =0,, we define

2
MV(V)z z Uijvjvi
- i,j=1
and
2
Mvt(v)= z vijvjti’

i,j=1

where v=(v, v,) is the unit outward normal and t=(t, 1,)=(v,, —V,) is the
unit tangent along 0T. Let

V= V(h)={V=(Uij) 10;€L5(Q), via=v3,
vijlreHl(T), VTet,,
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and M (v) is continuous at the interelement boundaries }

with ||v|[7 = Z lequlr

TeT,

and
W=Wg?Q),

where p is some number larger than 2.

The mixed method we study in this subsection will be based on the following
variational formulation of (3.1).

Given ge H "' (Q), find (u. V)e V x W satisfying

2 2 o, 0V, oy
1 b =0
x,]z=:1 Lu.,v.,dx +y {;21 J 2%, ox, J{:T M.,.(v) o ds} ,

Tex, s J
VveV,

6u” o
2{2 Lémzd"

Tex, 1,7

_J Mv1(u)'(3_(pds}="J g(PdX, V(pGW
6T ot 0

(3.15)

The correspondence between (3.1) and (3.15) is the same as the correspondence
between (3.1)and (3.10),i.e., if {is the solution of (3. 1), then ([0 y/dx, 0x ], {)
is a solution of (3.15),and if ((u,,), ) is a solution of (3. 15), then  is the solution
of 3 1) and u,, =22y/éx, éx,.

One easily sees that (3. 15)1s an example of problem P with V and W as above,
H as n section 3 b,

2
a(m,v)= Y Ju,,v,jdx
Q

, =1
and

2 0 0 0
bu, )= ¥ {z J S a—;llldx —LT Mw(u)%ds}.

Ter, s J

As in the previous subsections, a subclass D of data for which (H1) is satisfied is
given by D=0 x H ~'(Q), and since a is again symmetric, (H2) is satisfied for
G =H{§(Q). We note that in this example the space ¥ =V (h) depends on k. For
each h the form b (u, ) is bounded on ¥V (h) x W (where W= W }:?, p>2) with a
bound b that depends on h. In the error estimates in this subsection we do not
require that this bound be independent of k. Cf. the remark following theorem 3.

R.AIR O Analyse numérique/Numerical Analysis



ERROR ESTIMATES FOR MIXED METHODS 267

Letting S, be as defined by (3.5), we then consider the approximate problem
P, with
V,,={VE V. vij'TePk—l’ VTGT;,}
and
W,=S,aH§(Q).
With this choice for the forms a and b and the spaces ¥V, and W, we have the

method of Hermann-Johnson [14, 15, 16].

As in the previous subsections, hypothesis (H3) is satisfied with & =1. We now
consider (HS).

For ve V' we define n,ve V), as in [7], section 4, i.e., m, Vv is defined by the
conditions

j M, (v—m,v) gds=0, VgePy_,
r

and for all sides T of 1, ' (3.16)
and

J‘ [v,-j—-(n,,v),-j]qu=0, quPk—Z and VTE'[},.
T
By lemma 3 in [7], n, v is uniquely determined by (3.16). Since we can write

b(v, W= ; 0% u dx +| M (v)a—uds
H _rez:'h i.jz=1 by 0x,0x; i 0% br OV ,

(3.16) easily implies (H5). We note that by lemma 4 of [7] we also have for all
veVn[H " 2(Q)]*, r=3, that

|mav—v|oZCh!|v]:, 1LISmin(k, r—2). (3.17)

We next observe that by lemma 5 of [7], Z < Z, so that we are in the special cases
of theorems 2 and 3. In particular, by the corollary to theorem 2, (H4) need not be
satisfied in order to apply (2.15), so we shall not require {1, } to be quasi-
uniform. Since we wish to apply theorem 3, part ¢, we now show that hypothesis
(H7) s satisfied. As in the proof of lemma 5in [7),forve ¥, and pe W=W§" (Q)
we can write

2 az
o3 [ v

Tet, i, j=1
+ Y A(T',v) uds+ Y. Bla,v) p(a), (3.18)

T'el, JT aeld,
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where I, is the set of all sides of the triangulation t,, J, is the set of all vertices of

T, and A(T’, v) is a polynomial of degree less than or equal to k—2 in the
variable s.

For pe W we now choose £,pe W, so that

J(p-Zhu) qdx=0, VgeP,.3; and VTer,, (3.19)
T
J n—Z,p) qds=0, VgeP,_, and VT'el,, (3.20)
-

Zp—w(@)=0, Vaeld,. (3.21)

The unique solvability of this system is easily checked. Note that by the Sobolev
imbedding theorem, pe W implies peC°(Q). Since for veV, we have
0%v;;/0x;0x;|p€P,_5 and A(T", V)€ P,_,, it follows from (3.18) that Z,p,
as defined by (3.19)«(3.21), satisfies (H7). Furthermore, by a standard
application of the Bramble-Hilbert lemma [4], we obtain for all pe Wn H"(Q):

ln—Zpull;£Ch'" |||, j=0,1 and 1=I<min(r, k+1). (3.22)

We are now ready to apply theorems 2 and 3. Suppose that k=1 and
YeH"(Q), r=3. From (2.15) and (3.17) we obtain:

lu-wllosCllu-mullo<Chuls<CH | ¥lors  3.29)

where 6 =min (k, r—2).

To obtain estimates for  — Vs, we shall apply theorem 3 in several different
ways. Choosing G=H}(Q), p=.9,V, and n=.#,), (Where £, ¢ denotes the
standard Lagrange interpolant of ¢ in S,), we get from theorem 3 (a)-(b) that

“‘l/_‘l’h”1= sup {b(yd_nhyda V=S )
deH ™" ()

+a@,—u, n,y,—ya)+b@—m,u, >L‘1—f;.7\-.1}/l|¢1“ 1

To estimate the terms in the above expression, we introduce the affine
transformation

x=F(X)=BX+b,

mapping the reference triangle T with vertices (0, 0), (1, 0) and (0, 1) onto 7, and
set

VX)=B lveF(%) BTV,
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0:(?” l:’12> and v=<v“ U12>’
U1 Uz V21 Va2
¢(®)=9oF (%)

Using the standard change of variables argument, we have that if ve[H!(T)}*
and o e H'(T), where 1<! and 2<t, then

2 2 4
J y a"’ dx —ldetB|J a”" %% - ds
T

,,lax

where

and

and

~

o0Q 3 PP
[ 5ass S e [
T i= 7

where T and v denote the unit tangent and unit outward normal to 87,
respectively, T'; are the sides of T, and | T'; |=length of T’;.
Since
|B||sCh, |detB|<Ch?,  |B7'||<C/h,
and
|Ti|£Ch (cf. (8],

it easily follows that

2 vy o j' ) '
Lax— | M. 2as
L,leax 3x - ()6

ov;; 0¢ 2 \?|op
<Ch? 4 dx + ( v%) —\ds
N H;* i 21 0%; 0%, L* i,fz=1 ! ot

scr?|vl rll ol .29

Now from lemma 4 of {7],
nav—v=0
i o } (3.25)
VGPJ‘:'—1(T)= {V=(Uij), vijGPu-1(T), v12=7)21}
and
msv—vlr=Cc@|V] 2 (3.26)
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Using the standard properties of the interpolant (cf. [8]) we also get

Iro—0=0 if @eP,(T) (3.27)
and

”fh(’b“(’bllz,réc(T)lléllz,T- (3~28)
Using (3.24)-(3.28) we easily obtain:

0 d

7}
_J‘ MVT(V—TEhV)g'((p"jh(P)dS
o T

<Ch* inf |[V-pl|, ¢ inf [|0—qls ¢

pePi (1) qeP(T)

<Ch® inf |V—p|,r inf [[o—qll.r

pePi (1) qeP(T)
SCh |V r] o],

for 1=si<kand 2<t=<k+ 1. Changing back to the original variables we further
obtain:

|V, z<SCh*3 v,

and

!‘]\Ilt,f‘éc}l’_ll‘blz,T'
Hence if ve[H'(Q)]* and 9 e H*(Q) for 1 <I<k and 2<t<k+1, then
|b(V—7'5hV, (P_fh(P)|

<y

29
J Z a_v nhv)ua ((P fh(p)dx
T =

=

J‘ L(V— n,,v)——((p—f,,(p)ds
ORI vlr ¥l rsCh 2L W] (3.29)
Choosing v=Yy,, 9=V, [=1 and t=min(r, k+ 1)=sin (3.29) we get

6@ a=maya, Y=Fu )| SCh 7 yalls (1]l
If k=2 we choose v=u, p=2%,, I=s—2, and t=3 in (3.29) to obtain:
[b—mu, A= h)| SCETHulls | alls= CR WLl 2alls
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If k=1 we choose I=1 and t=2 to obtain:
[b@=rum, xa=50) | SChlull Al SCRIW ] [l
Finally if k=2, from (2.1), (2. 15), and (3.17) with I=1 and I=s—2 we have
la(,~u, 1,y4~y) SClluy—ulfo || maya=yallo
<Cllmwu—ullollmya=yallo=Ch=?[lull,-2 Al yalls
SCh I llyall-
If k=1 we choose I=1 in (3.17) to get
|a@i—u, mpya—y)SChijullihllyal s SCh* ][ |yalls
Applying the regularity result
lyalls+ [allasclla) -, (.30
and collecting terms, we get

lW=vuli=Cr || W)y for k=2 where s=min(r, k+1)(3.31)
and
lW—Vu|ssChljv|s  for k=1 (3.32)

We now derive estimates in L, (Q). First consider the case when k=1 and
Y e H*(Q). Using theorem 3(a)-(c)withG=L ,(Q),9=Z,¥,and =X, A,,and
(2.1) we easily obtain:

lo=dllo=C sup {f[dfloll¥=2uwflo+ fu=slollya=muyall

Aa—Thhg /d]o-
From (3.22) we get +”gH°” Th ”0} ” ”0

[¥=Zuvllo=Ch2{[ ¥l
and
Iha=EaralloSCR ]

Using (2.15) and (3.17) we have

u=uillollya=muyallosCllu=muullollya—mayallo =Ch*[ullsf[yal:.

Noting that ||d|| ;< ||d|o and || g|loSC||¥]|4, using (3.30) and combining
terms we obtain:

“‘I"‘l’h”oéc}lzu\l’nm (3.33)
for k=1.
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Next we consider the case k=2. Using theorems 3(a)-(c) with G=L ,(Q),
o=Z,V, and n=4,%,, and (2.1) we have

19 =¥lo=C sup (1dlloll¥=2uvllo+ ln=vslollva=mavallo
+|b@—nyu, Ag—FurD)|} /|| 4]0
From (3.22) with I=s=min(r—1, k+1) we get
=2y llosCH ¥
Using (2.15) and (3.17) with I=s—1 we see that
lo—usllo=CH | ¥z
and using (3.17) with /=1 and (3.30) we obtain:
lya=mayallo=Chl|dlo.
Finally from (3.29) with v=u, ¢ =A,, I=5—1, and t=3, and (3.31) we see that
|b=myu, ha—I4ha)| SCH ||Vl | d]o-
Combining these estimates we have
N—=vullo=CF V5. (3.39)
where s=min(r—1, k+1) and k=2.
Note that (3.34) gives an improvement over (3.31) only for k+1=<r—1.

Estimates (3.31) improve estimates in [7]. Babuska, Osborn, and Pitkdranta [3]
have proved (3.23), (3.31)-(3.34).

d) Raviart-Thomas method

In our final example we study a mixed method for second order elliptic
problems introduced by Raviart and Thomas [22, 25]. For geL,(Q), Q a
convex polygon in R?, we consider the model problem

—Ay=g in Q

y=0 on I. } (3.35)

Let H(div; Q)= {ve[L,(Q)]* : divve L,(Q)} with the norm
0¥ i o = V]G + (| divv]|3)2.

The mixed method we study is based on the following variational formulation
of (3.35).
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Find (u, y)e H(div; Q) x L, (Q) such that

Lu-vdx+fwdivvdx=0, VveH (div; Q) (3.36)
Q
and

J(p(divu+g)dx=0, VoeL,(Q). (3.37)
Q

In theorem 1 of [22] it is shown that problem (3.36)-(3.37) has a unique
solution (u, ) e H(div; Q) x L , (Q), that \sis the solution of problem (3.35), and
u=grad . In addition the following regularity result is known for this problem:

If geL,(Q) then ye H2(Q) N H}(Q) and
[V]22Cllgllos VgeL,(Q. (3.38)

One easily sees that (3.36)-(3.37) is an example of problem P with
V=H(div:Q),H=W=L,Q), [L,( Q)]

a(u, v)= J u-vdx and b(u, )= j Y divudx.
Q Q

The subclass D of data for which (H1) is satisfied is given by D=0 x W', Since a is
symmetric, the adjoint problem (2.5), (2.6) with G=W=L ,(Q) is the same as
problem P and thus is uniquely solvable for all de W'. Hence (H2) is satisfied.
Using (3.38) we also see that A ,e H?(Q) n H{(Q), y,= grad X, and

Iyalli+[12allz=Clld]fo- (3.39)

We now describe the finite dimensional subspaces used in the approximation
scheme. Following [22] we begin by introducing the space Q associated with the
unit right triangle 7"in the (&, n)-plane whose vertices are a; =(1, 0), 2, =(0, 1),
a;=(0, 0). For k>0 an even integer, define Q to be the space of all functions q of
the form

él.:pOlk(g, 1’])"‘0‘0&“1 +oy &kn'l' C +ak/2 &_,k’l2+1 T]klz,

q,=pol, (&, ) +PBon* 1 +B, EnF+. .. + By EE M2t
with
K2

.;0(— 1) (at;—B;)=0,

where pol, (§, n) denotes any polynomial of degree k in the two variables &, 7.
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For k=1 an odd integer, define Q to be the space of all functions q of the form

‘11=P01k(§, n)+°‘o§k+l+°‘1§kﬂ+ . -+“(k+1)/2§(k+1)/2ﬂ(k+“/2a

g2=pol(&, M)+ Bon + B ENF . 4By BT E G2

with
k+1)/2 (k+1)/2

Y (=Diwy= Y (=1)B;=0.
i=0 i=0

Now consider any triangle T in the (x,, x,)-plane whose vertices are denoted
by a;, 1<i<3. Let F; : x = F;(x)=B;x+by, Bre Z(R?), byeR? be the
unique invertible affine mapping such that F (a;)=a;, 1 <i<3. With each
vector-valued function v=(v,, v,) defined on T, we associate the function v
defined on T by

|
V= EBTVOFT 1,

where
Jr=det(B;).

For 0<h<1, assume that 1, is a triangulation of Q made up of triangles T’
whose diameters are less than or equal to 4 which satisfy the minimal angle
condition (see subsection 3a). We finally consider probiem P, with

V,={v,eH(div; Q) : VTet,, v4|;€Q;},
where
Q= {veH(div; T): veQ}
and
Wi={0weL,(Q) :VTet,, 94|r€P}.

To apply our theorems we must check that the appropriate hypotheses are
satisfied. Now (H3) is trivially satisfied with a=1. In the proof of theorem 3
of [22] it is essentially shown that there is an operator =, : [H'(Q)]* > V,
satisfying

bv—m,v, )=0, Vve[H'(Q)]> and YoeW,.

Furthermore, for ve[H ™' (Q)]?, r=2, we have
fy—mpvlo=Ch' v, 1<I€min(r—1, k+1), (3.40)
and

|[div(v—m,v)|[o S Ch™||divy|,, OSmSmin(r—2, k+1). (3.41)
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Using the regularity results (3.38) and (3. 39) we easily see that Y<[H ' (Q))* so
that (HS) is valid.

We next observe that for v,e V,, divy, |TeP,‘. Hence v, € Z, easily implies
divv,=0 and so v,eZ. Thus Z,=Z and so we are in the special cases of
theorems 2 and 3. Again by the corollary to theorem 2, (H4) need not be
satisfied in order to apply (2.15), so we shall not require {t"} to be quasi-
uniform.

We are now ready to derive the error estimates. Assume that ye H" (Q), r=2.
From (2.15) and (3.40) we obtain for k=0:

Ju-wllosCllu-mulosChall SCh¥iers 342
where t=min(r—1, k+1).

Now applying theorem 3 (a)-(b) we get
“\"_‘"h"0= sup {b(YJ—TthYa, V—9)

deL,(Q)

+a(u,—u, m,ys—y)+b@—m,u, Ag—m)}/||d|lo (3.43)

for all o, ne W,. Using (3.41) and standard approximability properties of W,
we have

new,

inf |b(y¢1“7thh, ‘1"@)' s "diV(YJ—MYa)“o inf “‘1"'(0”0
\ new,

<clldivyaloh ¥, 344
where p=min(r, k+ 1), and choosing m=pu—2 in (3.32),
inf |b@—rn,u, Ag—m)| < ||divu—=m,w||o inf ||Aa—n]lo

new, new,

sCh* 2| diva||,—2 h2||Aa]|2, (3.45)
provided k=1.
Using (2.1), (2.15), and (3.40) (with I=p— 1) we obtain for k=1:
la,—u, 1,4~y < ||wi—ullo]|maya—vallo
scllu-mullolmya=yalloSCR ullu-sBllyalli. (.46

Now from (3.43),(3.44),(3.45),(3.46) and the regularity result (3. 39) we obtain
for k=>1:

¥ —vallo=h* [ ¥l (3.47)
where p=min (r, k + 1).
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To obtain an estimate when k=0, we choose m=0 1n (3 41) to obtain

nf |[b—m,u, Ay—n)| £ || dive—m,u) o 1nf [[Aa—n]o

new, new,

__<=C[[d1vu||0hH7»,,||1 (3 48)
and choose /=1 1n (3 40) to obtain 1n the same manner as in (4 36) that

|'a(“h-“’ ﬂh)’d‘)’a)l éC“u“"thuHo“W;’)’d—h”o
<Chllufl h]lyall: 3 49

Combining (3 43), (3 44) with k=0, (3 48), (3 49), and the regularnty
result (3 39) we get

[W=VnulloSCh|| W] k=0 (3 50)

We note that estimate (3 42) was obtained 1n [25], IX-3 22a, and that (3 47)
gives an improvement over the result in [25], IX-3 224, 1n the case where
VYeH (Q),ueH "' (Q), and 25r<k+1
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