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A CONFORMING FINITE ELEMENT METHOD
WITH LAGRANGE MULTIPLIERS
FOR THE BIHARMONIC PROBLEM (%)

by Juham Pitkaranta (%)

Communicated by P -A RAVIART

Abstract — We consider a finite element method for solving the btharmonic problem A*u= fin Q,
u=0u/dn=0 on 9Q, Q< R?, IQ smooth We use the method of Lagrange multiphers to avoid the
fulfillment of the Dirichlet boundary conditions in the subspaces Assuming the interior subspaces to be
defined in terms of Argyris triangles, we show how the boundary subspaces in the Lagrange multipher
method can be defined so as to achieve a convergence rate of optimal order

Resume — On considere une methode d’elements fims pour resoudre le probleme biharmomque
A%u= fdans Q,u=0u/on=0sur 3Q,Q < R?, 0Qregulier Onutilise lamethode des multiplicateurs de
Lagrange pour eviter d’avoir a satisfaire les conditions aux limites de Dirichlet dans les sous-espaces
Supposant les sous-espaces « a 'interieur » defimis a 'aide de triangles d’ Argyris, on montre comment
defimr les sous-espaces « a la frontiere » afin d’obtenir un ordre de convergence d’ordre optimal

1. INTRODUCTION

Let Q be a bounded, simply connected plane domamn with a smooth
boundary dQ We consider a high-order displacement fimte element method for
the solution of the btharmonic problem

‘ A?u=f m Q, u=%=0 on 8Q,
where f1s some given function defined on Q In our approximation method the
fulfillment of the Dirichlet boundary conditions 1n the finite element subspaces 1s
avoided by using Lagrange multipliers Thus, our approach 1s an analogue of the
finite element method with Lagrange multipliers for solving the Dirichlet
problem for a second-order elliptic equation, see[1, 6,7, 8] Besides avoiding the
boundary condittons we get here independent approximations for

0
Au|,  and 5 Au |20

which 1s sometimes of physical interest
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310 J. PITKARANTA

We consider in detail an approximation where the approximate solution of
(1.1) is sought in a finite element space constructed by means of Argyris
triangles [4]. We show how the boundary subspaces in the Lagrange multipliers
method can be constructed so as to achieve a convergence rate of optimal order.
Our method of proof is analogous to that used in [7]: we introduce a norm
depending on the finite element partitioning and show that a quasioptimal errors
estimate can be obtained in this norm.

2. THE APPROXIMATION METHOD

For Q < R?, 9Q smooth, we use the symbol H™(Q), m= 0, for a Sobolev space
in its usual meaning. For non-integral s, s=0, one defineds H*(Q) by
interpolation, and for s <0, H*(Q) in defined as the dual of H ~*(Q) [5]. We also
denote by | D*u|? the sum of the squares of all the k-th order derivatives of u, u
defined on Q.

To define Sobolev spaces on the boundary, note that, since dQ is a closed
smooth curve, there exist the smooth periodic functions J, (t) and J, (¢), te R?,
with period of length unity. such that J (t)=(J (¢), J , (¢)) defines a 1-1 mapping
of (0, 1) onto Q. Assuming J is such a mapping, we can define H* (0Q), s=0, as
the closure of the set of all smooth functions on 02 in the norm

“\|’||H=(an)=|| (P”H‘(O,l)’ e (O)=V(J(2).

. . oo
consider the following weak formulation o

We
Q)eH? (Q)x L, (0Q) x L, (6Q) such that
B(u, ¥, ¢; 0, §, n)=J Jvdx
Q
(v, & M)eH*(Q) x L, (0Q) x L, (0Q),

for all

where

B(u, ‘l’a Q; 0, g, T])=J AuAde +J‘
Q

ou ov

— —V+ ds. (2.2
m(ané’;+un+ Y v(P) s. (2.2)

If u is the solution of problem (1. 1) for f sufficiently smooth, then the triple
(u, —Au|,,(0/0n) Au|,,) is the solution of (2. 1). Noting that the weak solution

of (1.1) in H2*(Q) satisfies (cf. [5]):
“ u ”H"‘(m + ” Au lm uH"""'(an)

1
<C|flpq> $>—3 2.3

+ 3

0
%Au‘m

HH(I!Z)([‘,}Q)

we conclude that the assumption f € H* (Q), s> — 1/2, suffices for the solvability
of 2.1).

R.A.I.R.O. Analyse numérique/Numerical Analysis



LAGRANGE MULTIPLIERS FOR THE BIHARMONIC PROBLEM 311

IfM"cH?(Q),U"c L, (8Q), V" < L, (0Q) are finite-dimensional subspaces,
one can define the approximate solution of (2.1) as the triple (u,, V,,
@,)eM" x U* x ¥* such that

B(uh’ ‘l’h’ LOF PR 7N é, T])=J‘ fvdx (24)
Q

v, & NeM xU"x V.

We define first the subspaces M*. To this end, let {I1"},_, _, be a family of
partitionings of Q into disjoint open subsets T; such that each T; e IT" is either a
triangle, or a deformed triangle with one curved side on dQ. We assume that the
partitionings are quasiuniform, i. €., the diameters of all the triangles in IT* are
proportional to h, and each Te I1" contains a sphere of radius proportional to h
(the minimal angle condition). Now let M"* be a finite-dimensional space of
functions defined on Q such that (i) for each ve M* and TeIl", v)pis a
polynomial of degree <5, (ii) M* = H? (Q), (iii) D? v is continuous at the vertices
of the triangulation IT*.

for all

The space M" can be set up by means of Argyris triangles [4]; for h small
enough, each ve M" is defined uniquely by the values of D*v, k=0, 1, 2 at the
vertices of the triangulation I1* and by the values of dv/dn at the midpoints of the
sides of the triangles in IT*.

To define the spaces U” and V", let {x,, ..., x,} be set of vertices of the
triangulation IT* on 0Q and let

ti=J—l(xi), i=1, ceey VY,
Ii=(ti+1’ti)3 i=1, ""V_ly

with J as above. We let N" denote the third-degree Hermitean finite element
space associated to the partitioning {I;}}™" of [0, 1], i. e., N” consists of
continuously differentiable functions ¢ (¢) such that ¢ I, is a polynomial of degree
<3forall i. Wefurtherset Ny={peN", ¢ (0)=9(1),¢’(0)=0’ (1)} and define

Ur=v"'={Yy; ¥(J(1))=08()eNg }.
3. RATE OF CONVERGENCE

We start by introducing on H? (Q) x L, (9Q) x L, (6Q) the norm

v, <p)nz=j ]Au|2dx+h‘1j ou
Q

oa | On

+h'3j uzds+hj \bzds+h3j ¢2ds.
o Q oQ

This is a norm, since the only harmonic function satisfying =0 on 0Q is zero.
Our aim is to prove the following theorem.

2

ds

vol. 14, n°3, 1980



312 J. PITKARANTA

THeOREM 1: Let (u, V, @)eH? (Q)xL, (0Q)x L, (6Q) be the solution of
problem (1.2) and let M"*, U*, V" be defined as above. Then if h is small enough,
problem (2.4) has a unique solution (u,,\V,, ©,) € M" x U" x V, and there exists a
constant C independent of h such that

”(u_uha\l[_\l’h,q)_q)h)”h =C min (e —v, ¥—&, @=m)ll;-

(t.EneMhx Urx It
The proof is based on the following two results.

ProrosiTioN 1: Let ve M" be such that

ov
—Eds=0, VEe U™,
Lﬂ i : )
(3.1)
J vnds=0, Vnev*t )
Q

Then if h is small enough, there is a constant C independent of h such that

h_lj‘ ov
o0

on

2
ds+h_3j vzds§CJ | Av|? dx.
o0 Q

ProrosiTioN 2: For all (€, n)e U" x V*, h sufficiently small, there exists ve M"
such that

f (ﬁ&+vn\|dsghf £2ds+h? f n2ds
\on / Jao

Joo o0

2
ds+h‘3j v2ds gc{hj &,st+h3j nzds},
Q aQ aQ

where C is independent of h.

and

v

0
Av 2dx+h_1f
L‘ I oa | ON

For a while, assume that the above propositions are true. Then we conclude,
by comparing the propositions with the stability conditions of abstract Lagrange
multiplier methods, as given in [3], that the bilinear form B of (2.2) satisfies

1 B(u: \lls ¢;0, E.n n)
inf sup =C>0, 3.2
(U, @)eM" x UM x V* (v & n)eM"x Ut x 1" H(u, \lls (P)“h“(U: &a n)”h - ( )

where C is independent of h. On the other hand, we note that B also satisfies
‘B(ua \lla P; v, (t:n n)1§”(u’ ‘1” (p)Hh“(v’ é: T\) h> (3*3)
for all (u, ¥, ),

(v, &, N)e H2(Q) x L, (0Q) x L, (3.

R.A.LR.O. Analyse numérique/Numerical Analysis



LAGRANGE MULTIPLIERS FOR THE BIHARMONIC PROBLEM 313
The assertion of theorem 1 now follows from (3.2) and (3.3) by classical
reasoning (see [2], pp. 186-188). [0

Proof of proposition 1: Let T, be any connected subset of 6Q such that I' is the

union of k curved sides of triangles in I1*, and let S, < Q be the union of closed
triangles Te IT* that either have a side I’ = I'; or have one vertex on I',. We set

Qi={vs,;veM"}.
We further let A be a scaling mapping,
A(x)=h"1x, xeR?,
and write
gk A(Sy), fk=A(rk),
v ={0;8(h ' x)=v(x)€0,, xeS, }.

Let us first assume that I"; is a segment of a straight line and that the mapping J :
[0, 1] — 0Q introduced in section 2 is locally of the simple form

xel'y, = x=J(t)=a+bt,
where a, be R? are some constant vectors. In this case the space

Xi={ox)oh ' x)=0,(x)e Uhlrk= Vh|rk, xerk}

is simply the third-order Hermitean finite element space associated to the
partitioning of T', that is induced by the triangulation

"= {T; T=A(T), TeNl"}.

We let {&;} denote the set of ordinary local basis functions of X, with
&l cy=1, and let A, be the index set such that if i€ A,, then £, and its
tangential derivative on I, vanish at the endpomts of I',. Obviously, if m, is the
number of vertices of I1* in the interior of I, then card (A,)=2m,.

In the above notation, let us define on §, the seminorm |. |, as

J Z‘,‘zds

= J |Az|?dx + Y
S

1€A,

0z
nﬁ;%d

ae/\,t

Then we have:

Proof: Let z€Q, be such that |z|; =0. We show first that z is a harmonic
polynomial (of degree < 5). To this end, let us number the triangles Tell*,
T <8, from 1 to ] in such a way that 7, and 7, , have a common side for

vol. 14, n°3, 1980



314 J. PITKARANTA

i=1, ..., l—1.Thisis possible by our definition of §,. Let p, be a polynomial of
degree < 5 such that z;; =p;. Then since | z |, =0, p; is a harmonic polynomial.
Further, since z and 0z/0n are continuous, we conclude that g;=p,—p,,, is a
harmonic polynomial satisfying q,=0q,;/0n=0 on the common side of T; and
T ;+,. But then 4;=0. Hence, there is a harmonic polynomial p such that z=p
on §,.

We now have that z is a polynomial of degree < 5 satisfying
0z
zds= —ds= ieA,.
r_.2’;,2 s J‘hf;,ands 0, ieA,

Since card (A,) increases linearly with k, it is obvious that for k large enough we
necessarily have z=9z/0n=0 on [',. But z was a harmonic polynomial, so
z=0. O

From lemma 1 we have in particular that

||z(|,§,(sk)§c” azfrax+ 3 | [ . Zas
Sy

i=—
teA, | v, on

J E;zds
I,

where C depends on @,. Now it is easy to see, arguing by contradiction, that
whenever the triangles composing S, satisfy the minimal angle condition, 3.4
holds uniformly for ail S, constructed as above (with straight T,), with C
depending only on the constant in the minimal angle condition and on k. (Note
that, by the minimal angle condition, the number of triangles 7' [1* that touch
T, is at most a finite multiple of k.)

2

+ 3

1A,

2
}, ZEri kzky, (3.4

The next step of the proof is to verify that, for h small enough, (3.4) also holds
when the actual curvature of I, is taken into account. To this end, consider a
given I, §, and choose an appropriate coordinate system { x, x, } to represent
I, as )

= {(xu X2); x;=0(x,), x,€I=[0, d]},
where 8(0)=0(d)=0. Since dQ is smooth, we may assume that if h is small
enough, then 6 also satisfies

|0'(x,)|SCh, x,€l, (3.5)
where C depends only on Q for fixed k.

We associate to each triangle Te 1", T < §,, another triangle 7" as follows.
Let T have the vertices x*, k=1, 2, 3. Then 7" is defined as a triangle with straight
sides and with the vertices y* such that if x*¢ I',, then y*=x* and if x*=(xf,

R.A.LR.O. Analyse numérique/Numerical Analysis



LAGRANGE MULTIPLIERS FOR THE BIHARMONIC PROBLEM 315

8(x%) el, then y*=(x*, 0). We denote the union of the closed triangles 7" by S},
and set 'y = {(x,, x,); x, €1, x,=0}. We further associate to S; and I'; the
spaces Q; and X as above and let { € },., denote the set of local basis functions
for X, such that €, and d€,/dx, vanish at the end-points of I';.

Noting that we have
dist{x, 0T} < Ch, xedT", (3.6)

where C is independent of the triangle 7', we conclude that the triangles 7" satisfy
the minimal angle condition if 4 is sufficiently small. Hence, we have from (3.4)

that
~ 0z > 2
L&iads J;Lﬁ,-zds }, 3.7)

ZGQA;‘, kg kO'

Now we need the following technical lemma.

2+Z

ieA,

Iallosy = €] [ asans 3

ieA,

Lemma 2: Forany ze Q, and 9 = ¢ (x,) e X; there exists ze O} and ¢ € X, such
that ~
| 182126, = 182112, 50| = Ch |2 ]l72ss
I(D(xlae(xl))_&)(xl)léCh”&)”Lx(l)’ x.€l,

where C is independent of z, P, Xy.

Proof- Letze 0, be given, and let { a; } and { a; } be the sets of the vertices of
the triangulations of §, and S, respectively, and let { b, } and { b; } be the sets of
the mid-points of the sides in the triangulations, with

|a;—a;|<Ch, |b,—b;|<Ch.

Define z so that
6l+m; ( ,) al+mz
a:)j=
ox' ox7 "t oxhox%y

(a,), I+m £ 2,
and o 5
2 on 92,
57 0= n (®)).
Then if p and p are polynomials such that z = p and . =, it is easy to verify
from (3.6) that '
~ 2
| AP1IZ, ity + 11 AP IIZ, i1y = Ch| Pllueanys
[Ap—Ap ||, 21y < Ch|lp lla2cry-

From this the first part of the assertion follows easily.

vol. 14, n°3, 1980



316 J. PITKARANTA

Next, let € X; be given and define ® € X, so that if (s, 0) is a vertex of the
triangulation of S, then

D(xy, 9("1)):&)()‘1)
and
4 oy, 0 )= -Sd(x)  at x;=s
at X1 1 _dxl 1 158,

where d/dt denotes the tangential differentiation on I',. Recall from the
definition of the subspace U"= V" that if p e X,, then

O(x1, 0(x1)=0o(x1)=n(t(x,), x,€l,
where ) is a piecewise polynomial function, and the relation x ; = x, (¢) is of the
form X (=h~'J (1), telo=[ty, t;], |t;—ts|<Ch,
where J, is a smooth mapping. Write J; locally as
J1(®)=F()+A(),
where F is an affine mapping and A satisfies
A(t)=A(t;)=0, |A()|=Ch?*,  tel,.
Taking the inverse we then have
t=F " 1(hx,)+A,(x,), x,€l,
with A, (0)=A, (d)=0, | A, (x,)| £ Ch?, x, €I. Thus, we may write
Po(xy)=n(F " (hx;)+A,(xy))
=n(F 1 hx ) +A,00)=no(x)+Ay(x4),  x,€],
where o€ X; and A, satisfies
A x| = Chlnllz,ay=Chllollz. -
Setting @ =® and using (3.5) we now easily find that

Dxy, 6(x,)=Do(x)=m(x,)+A(x,), x,€l,
where
|A(x,)| £ Chl||®,

=G h”&)”LW(n’
and ne X is such that if (s, 0) is a vertex of the triangulation of §;, then
INE@-®©)| = Chr||§]|;, 4

d ~ ~
iy (x1>—q>(x1)],xl=s' < Ch||®||. w-

and

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The second part of the assertion then follows. [
Now let ze Q, be given, let z be as in lemma 2, and let &, e X, be local basis
functions such that
‘Eu(xl)_&n(xla e(xl))l é Ch“E, ”L,(l)=Ch‘
Then lemma 2 and (3.7) imply:
j €. zdx,

211526,

|

gclu |Az|2dx+ > | &,
Sy

1€, T

xeA,l

§C1{J |Az|?dx+ S Jé—ds + f&zds }
Sk 1€A, 1€A,
+Czh{||z||,2,z(§)+J o ds+f zzds}.
' r,|on r,

On the other hand, within the assumputions made on S, we certainly have:

J 0z |?
fy

on
Thus, we conclude that (3.4) holds also 1n the case of a curved I, if h is small
enough.

ds+j 22ds S Cl|z||jrg, 260 (3.8)
L,

As a consequence of (3.4) and (3.8) we have in particular that

J oz|?
Ty

'

ds+J z%ds J
T
0z
gc{[ |Az|?dx+ Y f ?’;,—ds j E.zds },
S, £, 6n \

1A,
zeQ,, k=kg.

Using this inequality 1t is now easy to complete the proof: Take ve M" to be
such that (3.1) is satisfied, and choose a collection { SP’, I'{’ }Y_,, k = k,, such

on

(3.9)

lEAk

that { ] T}’ =06Qand for allj, S n 5" = O for all except three values of /. Then
=1 i
if UJ(X)=U(hx), xeS;j)=A(S}(j))’

we have, setting z=v, in (3.9), that

ﬁ; 5 L gs= J €,v,ds=0,
and hence Py n 1%

2
J ds+J v2ds §CJ |Av,|2dx,  j=1,...,v.
T 8% o

vol 14, n°3, 1980
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318 J. PITKARANTA

Upon scaling scaling back to the original size we get

h—l
[‘{/)

Summing over j, we now obtamn the desired inequality, and the proof of
proposition 1 is complete. [J

dv

on

2
ds-i—h'sj v ds éCJ |Av|2dx,  j=1,...,v.
ry N

Proof of proposition 2: Let (§,m)e U" x V" be given, let { x*, ..., x"} be the set
of vertices of the triangulation IT" on 8Q, and let { y*, ..., y*} be the set of mid-
points of the sides on dQ of the triangles in I1". We consider functions u, ve M*,
which satisfy

u,(x)=h&(x",  u,(y)=h&("),  u,(xH=h&,(x"),
v(x)=h’n(x), v, (x)=h>n,(x"), (3.10)
i=1,...,v.

Here u, and u, are respectively the normal and the tangential derivative of u
on 0Q.

Among the functions u, ve M" that satisfy (3.10), let u, and v, be those
obtained by setting all the remaining degress of freedom (in the Argyris triangles)
equal to zero. We prove first some estimates for u,, vy and wyg=ugy+uv,.

Lemma 3° If ho1s small enough, then

2
Awg ! uxéc(h_' r I%I db+h_3r wéa’s?,
Ja! 5! 1 on | Lo
Q 50

[%9)

0
auno +hk2““0”Lz(aQ> s Ch“E: ‘Lz(m)’
L,(a9)
ov
—a;o“ + H "0||Lz(am = Chs““ ”Lz(ar»'
2 (69

Proof: Let TeIl" be such that T has a curved side I' on 6Q, let T=A(T),
I'=A(I), where A(x)=h ! x, xe R?, and let # (x) = v (hx) for v defined on Tor T".
We choose a coordinate system {x,, x2} so as to represent I' as

I'= {(-xl’ X3); X, =0(x,), x; €I=]0, d]},
0(0)=06(d)=0, 9’(x1)|§Ch, x,€el.

One can verify from (3. 11) and from the minimal angle condition that if p is any
polynomial of degree < 5, then

(3.11)

k+lp k+lp
ot ax OO g (41 001D

S Ch||p|lyzsy,  x1€1, k120, (3.12)

R AIR O Analyse numérique/Numerical Analysis



LAGRANGE MULTIPLIERS FOR THE BIHARMONIC PROBLEM 319

Further, since p(x,, 0) and dp/dx, (x, 0) are polynomials in x, of degree 5 and
4, respectively, we have, for some positive constants C, and C,,

d
C1J0lp(x1: 0)|2dx1

2 ak 2 kp 2
>
g’ { ox "(O 0 i x4 }
d
gczj Ip(x1,0)|2dx1, (3.13)
and 0
4| op 0 2
C1J0 a:(xu dx, = ( '—(d 0)
ap 2 Z 2 62
+‘a—2‘(h,0) ‘6 o 2(0 0) 6x1

(xq, dxl, (3.14)

d
op
>C —_—
- ZJO 0x,

We now apply the above inequalities in the particular case where p = . First,
note that i, is defined uniquely by the values of

where (y,, 8 (y,)) is the midpoint of T".

aw ak+l
U0 G a,(o 0),
and
ak+l A
. S 04,0, k+l<2,
an
2 2 2
0 € %o (o, 0)— _0 w°(d 0)_@ “"’(d 0)=0.

Using (3.12) through (3. 14) we then have

2
Hwﬂéméc{i[ﬂﬂwdamv
k=0

e

+|D*ibo (d, 0)|21+|—(y1,0>‘ }

2 d
dx1+j
0

+C,h?

éCI{J O,

S

Oig

a X5 (xl’O)

Wo(xy,0)

2
dxl}
“i21‘m

s | 034 b,

vol. 14, n°3, 1980



320 J. PITKARANTA

and so, for & small enough,
. Ot | [
|lw(,||,2,z(,,§c{frW as | wgds}.
Next, let p=ii,. Then (3.10) and (3.12) through (3. 14) imply
Ot

l on Lz(f).

Further, using (3. 10) and repeating some of the arguments used 1n the proof of
lemma 2, we have

o “Lz(f) sCh ” o “H’(f’)écl h

Oilg

o < ORI

L,(f)

By a similar logic, one can verify that

on §Ch“ﬁo||Lz(f)§C1h4nﬁ”Lzm'

L,(f)

Consider finally a triangle TeI1" which has only a vertex on Q. Let this vertex
be shared by the triangles T, , T, € I1*, both of which have a side on Q. Then if
T=A(T), T,=A(T), it is easy to verify from the definition of w, that

@0 |7 =C {1l @072y I PollZzy }-

Upon scaling in the last five inequalities obtained above, summing over Tand T,
and noting that w, vanishes on any triangle 7' IT* that does not touch 49, the
asserted inequalities follow. []

In view of lemma 3, if we set v=w,, the second inequality of proposition 2 is
proved. To prove the first inequality, note first that we have
Oug
on
This follows again from local arguments similar to those used 1n the proof of
lemma 2. Using this we have that, for /i small enough.

—h&

<Ch|ht

L irQ)

|L1 (GN

J %E,dsgChJ £2ds, C>0. (3.15)
w On 2

To continue, we need the following lemma. The proof 1s given 1n the Appendix.

Lemma 4: Let p (t) be any polynomial of degree <3, and let q(t) be a polynomial
of degree <5 such that

q@=p©), ¢ ©O=p 0, gD)=pO),
q'(H=p’'(1), q"(0)=¢g"(1)=0.

R A1R O Analyse numenique/Numerical Analysis
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Then
1 1
J pthgCJ ptdt, C>0.
0

0

Using [emma 4 and once again repeating arguments from the proof of [emma
2, we get that for h small enough,

j vondsgCh:‘J n2ds, C=0. (3.16)
oQ oQ

Combining (3.15) and (3.16) with the inequalities of lemma 3 we now have

0
J ﬂ&ds+j wonds gChJ F,zds+Ch3j n2ds
o On 0 £ 0

vy
+ — Eds+ J UuoMnds
J;n on o0 o

gChj szds’LChsj nzdS—mellillemm!In L,(09)
Q o0

1
g(c--cm){hj gst+h3J nst}, C>0.
2 oQ Q

This proves the first inequality in proposition 2, with v =w, h sufficiently small.
The proof is then complete. [

Using theorem 1, we can now evaluate the rate of convergence of the Lagrange
multiplier method (2.4).

THEOREM 2: Let (u, V, ©) be the solution of (2. 1) for fe H*(Q), s> —1/2, and let
(un> Vs, @4) be the solution of (2.4) with the subspaces M*, U", V" defined as
above. Then we have the error bound

2 5,
Z h2k_4 IDk(u_uh)lde"'h_l —‘(u_‘uh)
k=0 o |01

2

ds

+h—3j |u—u,,|2ds+hj |\|/—\l/,,[2ds+h3j lo—o,|2ds
oQ eQ aQ

SCh M| f 1|
p=min{4, s+2}.

Proof: For u defined on Q and sufficiently smooth, letu be the interpolant of u
on M". Then we have, by classical results of approximation theory (cf. [4]), the
estimates

2
z hj | D=2 dx <Ch**™* 2.,
k=0 Q

ue H*(Q), 3<ss6.
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Reasoning by a local scaling argument analogous to that used in [7] one can also
verify that

/l_lJ
[7(9]

9 i

on

2
ds+h3 J lu—ul|?ds
Q

IIA

2
cy h“_“J | D*(u—u)|? dx,
k=0 A

where A is the union of the triangles in IT* that have a side on 0Q.

On the other hand, by the definition of the space U"= V" and again by
classical results of approximation theory, we have

mir: “ V-£ | L,(69Q) s=Chr “ v "mwm ’
U

e
YeH (6Q), 0<s<4.

Upon combining the above estimates with theorem 1 and with the a priori
estimate (2.3) we have proved:

[|@—up, V—=Vh, 0 —0) || S Ch*|| [ || gy s
s>—%, p=min {4, s+2}.

To complete the proof, we use the Aubin-Nitsche duality argument together with
(2.3), (3.3), and the above approximation results to conclude that

”u—uh“Lz(n)§Ch2 ”(u—“;n Y=y, (P_(Ph)”h-

Finally, since partitioning IT* is quasiuniform, we have the inverse estimates
[ 10wl axsc h fumwli
Q

+min {h2*||u—v]? (Q)+J |D"(u—v)|2dxn,
veM* : Q }f
k=1,2.

Upon combining the last three estimates, the assertion of the theorem
follows. [
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APPENDIX

PROOF OF LEMMA 4

Let 3
p(t)y=2 o;t',  tel0,1].

i=0

Then the polynomial g(¢) of degree <5 which satisfies

q(to)=p(to), q'(to)=p' (o), q"(to)=0, to=0,1,

is given by

gt)=ao+a t+o, (23—t +oy(—2t34+6t*—315).

We then have

Jo pgdt=[a}” [A] [a],

where [o)"=[op, - - ., &3] and the 4 x4 matrix [4] is given by
[ 11 9]
2 60 40
12 13
[A]= 3 120 70
sym. 4 13
21 84
11
L 84 _

vol. 14, n°3, 1980



324 J PITKARANTA

By a direct computation, the characteristic equation of [A] can be wiitten into the

form a
Z (=1, A =0, ¢,>0
1=0

Hence, all the exgenvalues of [4] are positive Ifin particular A, > 01s the smallest
eigenvalue, we have

fl pgdt=[a]” [A] [a] =X, [c] [0} =2, C Jl p%dt, C>0,

[J] 0

which proves the assertion [
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