A finite element solution for plasticity with strain-hardening
RAIRO. Analyse numérique, Tome 14 (1980) no. 4, pp. 347-368.
@article{M2AN_1980__14_4_347_0,
     author = {Hlav\'a\v{c}ek, Ivan},
     title = {A finite element solution for plasticity with strain-hardening},
     journal = {RAIRO. Analyse num\'erique},
     pages = {347--368},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {14},
     number = {4},
     year = {1980},
     mrnumber = {596540},
     zbl = {0471.73078},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1980__14_4_347_0/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
TI  - A finite element solution for plasticity with strain-hardening
JO  - RAIRO. Analyse numérique
PY  - 1980
SP  - 347
EP  - 368
VL  - 14
IS  - 4
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1980__14_4_347_0/
LA  - en
ID  - M2AN_1980__14_4_347_0
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%T A finite element solution for plasticity with strain-hardening
%J RAIRO. Analyse numérique
%D 1980
%P 347-368
%V 14
%N 4
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1980__14_4_347_0/
%G en
%F M2AN_1980__14_4_347_0
Hlaváček, Ivan. A finite element solution for plasticity with strain-hardening. RAIRO. Analyse numérique, Tome 14 (1980) no. 4, pp. 347-368. http://archive.numdam.org/item/M2AN_1980__14_4_347_0/

1. I. Babuska, M. Práger and E. Vitásek, Numerical Processes in Differential Equations, S.N.T.L., Prague, 1 1966. | MR | Zbl

2. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland Publ.Comp., Amsterdam, 1978. | MR | Zbl

3. K. Gróger, Initial Value Problems for Elastoplastic and Elasto-Viscoplastic Systems. Nonlinear Analysis, Proc. Spring School, Teubner, Leipzig, 1979, pp. 95-127. | MR | Zbl

4. B. Halphen and Nguyen Quoc Son, Sur les matériaux Standard généralisés, J.Mécan., Vol. 14, 1975, pp. 39-63. | MR | Zbl

5. R. Hill, Mathematical Theory of Plasticity, Oxford, 1950. | MR | Zbl

6. I. Lavácek and J. Necas, Mathematical Theory of Elastic and Elasto-Plastic Bodies, Elsevier, Amsterdam, 1980. | Zbl

7. I. Hlavácek, Convergence of an Equilibrium Finite Element Model for Plane Elastostatics, Apl. Mat., Vol. 24, 1979, pp. 427-457. | MR | Zbl

8. C. Johnson, On Plasticity with Hardening, J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. | MR | Zbl

9. C. Johnson, A Mixed Finite Element Method for Plasticity Problems with Hardening, S.I.A.M. J. Numer. Anal., Vol. 14, 1977, pp. 575-583. | MR | Zbl

10. C. Johnson, On Finite Element Methods for Plasticity Problems, Numer. Math.,Vol. 26, 1976, pp. 79-84. | MR | Zbl

11. C. Johnson and B. Mercier, Some Equilibrium Finite Element Methods for Two-Dimensional Elasticity Problems, Numer. Math., Vol. 30, 1978, pp. 103-116. | MR | Zbl

12. M. Rrîzek, An Equilibrium Finite Element Method in Three-Dimensional Elasticity, Apl. Mat. (to appear). | MR | Zbl

13. B. Mercier, A personal communication.

14. Nguyen Quoc Son, Matériaux élastoplastiques écrouissable, Arch. Mech. Stos., Vol. 25, 1973, pp. 695-702. | MR | Zbl

15. V.B. Watwood and B.J. Hartz , An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems, Inter. J. Solids Structures, Vol. 4, 1968, pp. 857-873. | Zbl