Finite element subspaces with optimal rates of convergence for the stationary Stokes problem
RAIRO. Analyse numérique, Tome 16 (1982) no. 1, pp. 49-66.
@article{M2AN_1982__16_1_49_0,
     author = {Mansfield, Lois},
     title = {Finite element subspaces with optimal rates of convergence for the stationary {Stokes} problem},
     journal = {RAIRO. Analyse num\'erique},
     pages = {49--66},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {16},
     number = {1},
     year = {1982},
     mrnumber = {648745},
     zbl = {0477.65084},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1982__16_1_49_0/}
}
TY  - JOUR
AU  - Mansfield, Lois
TI  - Finite element subspaces with optimal rates of convergence for the stationary Stokes problem
JO  - RAIRO. Analyse numérique
PY  - 1982
SP  - 49
EP  - 66
VL  - 16
IS  - 1
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1982__16_1_49_0/
LA  - en
ID  - M2AN_1982__16_1_49_0
ER  - 
%0 Journal Article
%A Mansfield, Lois
%T Finite element subspaces with optimal rates of convergence for the stationary Stokes problem
%J RAIRO. Analyse numérique
%D 1982
%P 49-66
%V 16
%N 1
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1982__16_1_49_0/
%G en
%F M2AN_1982__16_1_49_0
Mansfield, Lois. Finite element subspaces with optimal rates of convergence for the stationary Stokes problem. RAIRO. Analyse numérique, Tome 16 (1982) no. 1, pp. 49-66. http://archive.numdam.org/item/M2AN_1982__16_1_49_0/

1. M. Bercovier and M. Engelman, A finite element for the numerical solution of viscous incompressible flows, J . Comp. Phys., 30 (1979), 181-201. | MR | Zbl

2. G. Birkhoff, Tricubic polynomial interpolation, Proc. Natl Acad. Sel 68 (1971),1162-64. | MR | Zbl

3. G. Irkhoff and L. Mansfield, Compatible triangular finite éléments, J . Math. Anal Appl., 47 (1974), 531-53. | MR | Zbl

4. J. H. Bramble and M. Zlamal, Triangular elements in the fînite element method, Math. Comp., 24 (1970), 809-20, | MR | Zbl

5. P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in R n with applications to finite éléments methods, rch. Raîional Mech. Anal, 46(1972), 177-99, | MR | Zbl

6. P. G. Ciarlet and P. A. Raviart, The combined effect of curved boundaries and numerical intergration in isoparametric finite element methods, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed. Academic Press, New York, 1972, pp. 409-74. | MR | Zbl

7. M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O., 7 (1973), 33-76. | EuDML | Numdam | MR | Zbl

8. V. Girault and P. A. Raviart, Finite Element Approximation of the Navier Stokes Equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, 1979. | MR | Zbl

9. P. Jamet and P. A. Raviart, Numerical solution of the stationary Navier-Stokes equations by finite element methods, Lecture Notes in Computer Science, Springer Verlag, 10, 192-223. | MR | Zbl

10. L. Mansfield, Higher order compatible triangular finite elements, Numer. Math., 22 (1974), 89-97. | MR | Zbl

11. L. Mansfield, Interpolation to boundary data in tetrahedra with applications to compatible finite éléments, J. Math. Anal Appl., 56 (1976), 137-64. | MR | Zbl

12. A. H. Stroud, Approximate Calculation of Multiple Intégrais, Prentice Hall, Englewood Cliffs, N. J., 1971. | MR | Zbl