Near-best approximations to the solution of Fredholm integral equation of the second kind
RAIRO. Analyse numérique, Tome 16 (1982) no. 2, pp. 129-141.
@article{M2AN_1982__16_2_129_0,
     author = {Levin, David},
     title = {Near-best approximations to the solution of {Fredholm} integral equation of the second kind},
     journal = {RAIRO. Analyse num\'erique},
     pages = {129--141},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {16},
     number = {2},
     year = {1982},
     mrnumber = {661452},
     zbl = {0483.65073},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1982__16_2_129_0/}
}
TY  - JOUR
AU  - Levin, David
TI  - Near-best approximations to the solution of Fredholm integral equation of the second kind
JO  - RAIRO. Analyse numérique
PY  - 1982
SP  - 129
EP  - 141
VL  - 16
IS  - 2
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1982__16_2_129_0/
LA  - en
ID  - M2AN_1982__16_2_129_0
ER  - 
%0 Journal Article
%A Levin, David
%T Near-best approximations to the solution of Fredholm integral equation of the second kind
%J RAIRO. Analyse numérique
%D 1982
%P 129-141
%V 16
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1982__16_2_129_0/
%G en
%F M2AN_1982__16_2_129_0
Levin, David. Near-best approximations to the solution of Fredholm integral equation of the second kind. RAIRO. Analyse numérique, Tome 16 (1982) no. 2, pp. 129-141. http://archive.numdam.org/item/M2AN_1982__16_2_129_0/

[1] C. T. H. Baker, Numerical solution oj integral equation, L M DELVES, J WALSH eds Clarendon Press, Oxford, 1974.

[2] D. Levin, Near-best approximations to some problems in applied mathematics, Report TR/66, Department of Mathematics, Brunei Umversity, 1976.

[3] D. Levin, Corrected collocation approximations for the harmonic Dirichlet problem, aths Applics, 26, 1980, 65-75. | MR | Zbl

[4] S. A. Pruess, Estimating the eigenvalues of Sturm-Liouville problems by approximat ferential equation, SIAM J Numer Anal, 10, 1973, 55-68. | MR | Zbl