Finite element solution of quasistationary nonlinear magnetic field
RAIRO. Analyse numérique, Tome 16 (1982) no. 2, pp. 161-191.
@article{M2AN_1982__16_2_161_0,
     author = {Zlamal, Milo\v{s}},
     title = {Finite element solution of quasistationary nonlinear magnetic field},
     journal = {RAIRO. Analyse num\'erique},
     pages = {161--191},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {16},
     number = {2},
     year = {1982},
     mrnumber = {661454},
     zbl = {0489.65069},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1982__16_2_161_0/}
}
TY  - JOUR
AU  - Zlamal, Miloš
TI  - Finite element solution of quasistationary nonlinear magnetic field
JO  - RAIRO. Analyse numérique
PY  - 1982
SP  - 161
EP  - 191
VL  - 16
IS  - 2
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1982__16_2_161_0/
LA  - en
ID  - M2AN_1982__16_2_161_0
ER  - 
%0 Journal Article
%A Zlamal, Miloš
%T Finite element solution of quasistationary nonlinear magnetic field
%J RAIRO. Analyse numérique
%D 1982
%P 161-191
%V 16
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1982__16_2_161_0/
%G en
%F M2AN_1982__16_2_161_0
Zlamal, Miloš. Finite element solution of quasistationary nonlinear magnetic field. RAIRO. Analyse numérique, Tome 16 (1982) no. 2, pp. 161-191. http://archive.numdam.org/item/M2AN_1982__16_2_161_0/

[1] J. Céa, Optimization, Dunod, Paris, 1971 | MR

[2] P. G. Ciarlet, The finite element method for elliptic problems North-Holland, Amsterdam-New-York-Oxford, 1978. | MR | Zbl

[3] Ph. Clement, Approximation by finite element function using local regularisation. R.A.I.O. Anal. Num., 9e année, 1975, pp. 77-84. | Numdam | MR | Zbl

[4] H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgletchungen. Akademie-Verlag, Berlin, 1974. | MR | Zbl

[5] O. A. Ladyzenskaja and L. Stupjalis, Ob uravnenijach smesannogo tipa. Vestnik Leningradskogo Universiteta, n° 19, 1965, pp. 38-47. | MR

[6] J. D. Lambert, Computational methods in ordinary differential equations. Wiley, London, 1972. | MR | Zbl

[7] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod and Gauthier-Villars, Paris, 1969. | MR | Zbl

[8] F. Melkes and M. Zlamal, Numerical solution of nonlinear quasistationary magnetic fields To be published. | Zbl

[9] J. Necas, Les méthodes directes en théorie des équations elliptiques Academia, Prague, 1967. | MR

[10] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations inseveral variables. Academic Press, New York and London, 1970. | MR | Zbl

[11] P. A. Raviart, Sur la résolution et l'approximation de certaines équations paraboliques non linéaires dégénérées. Arch. Rat. Mech. Anal., vol. 25. 1967, pp. 64-80. | MR | Zbl

[12] P. A. Raviart, Sur la résolution de certaines équations paraboliques non linéaires J. Func. Anal., vol. 5, 1970, pp. 299-328. | MR | Zbl

[13] T. Temam, Navier-Stokes equations. North-Holland, Amsterdam, 1977. | Zbl

[14] M. Zlamal, Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Anal. Num., vol. 11, 1977, pp. 93-107. | Numdam | MR | Zbl