Approximation of Burgers' equation by pseudo-spectral methods
RAIRO. Analyse numérique, Tome 16 (1982) no. 4, pp. 375-404.
@article{M2AN_1982__16_4_375_0,
     author = {Maday, Y. and Quateroni, A.},
     title = {Approximation of {Burgers'} equation by pseudo-spectral methods},
     journal = {RAIRO. Analyse num\'erique},
     pages = {375--404},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {16},
     number = {4},
     year = {1982},
     mrnumber = {684831},
     zbl = {0514.65084},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1982__16_4_375_0/}
}
TY  - JOUR
AU  - Maday, Y.
AU  - Quateroni, A.
TI  - Approximation of Burgers' equation by pseudo-spectral methods
JO  - RAIRO. Analyse numérique
PY  - 1982
SP  - 375
EP  - 404
VL  - 16
IS  - 4
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1982__16_4_375_0/
LA  - en
ID  - M2AN_1982__16_4_375_0
ER  - 
%0 Journal Article
%A Maday, Y.
%A Quateroni, A.
%T Approximation of Burgers' equation by pseudo-spectral methods
%J RAIRO. Analyse numérique
%D 1982
%P 375-404
%V 16
%N 4
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1982__16_4_375_0/
%G en
%F M2AN_1982__16_4_375_0
Maday, Y.; Quateroni, A. Approximation of Burgers' equation by pseudo-spectral methods. RAIRO. Analyse numérique, Tome 16 (1982) no. 4, pp. 375-404. http://archive.numdam.org/item/M2AN_1982__16_4_375_0/

[1] R A Adams, Sobolev spaces, Academic Press, New York (1975) | MR | Zbl

[2] J Babuska, A K Aziz, " Survey lectures on the mathematical foundations of the finite element method ", in The Mathematical Foundations of The Finite Element Method with Applications to Partial Differential Equations, Ed Aziz, Academic Press, NewYork (1972), 3-343 | Zbl

[3] J Bergh, J Lofstrom, Interpolation Spaces An Introduction, Springer Verlag, Berlin (1976) | MR | Zbl

[4] F Brezzi, J Rappaz, P A Raviart, Finite dimensional approximation of nonlinear problems Part I branches of nonsingular solutions Num Math , 36 (1980), 1-25 | EuDML | MR | Zbl

[5] C Canuto, A Quarteroni, Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions, Calcolo, 18 (1981), pp 197-217 | MR | Zbl

[6] C Canuto, A Quarteroni Approximation results for orthogonal polynomials in Sobolev spaces, Math Comput, 38 (1982), pp 67 86 | MR | Zbl

[7] A Davis, P Rabinowitz Methods of Numerical Integration, Academic Press,New York (1975) | MR | Zbl

[8] D Gottlieb, S A Orszag, Numerical Analysis of Spectral Methods Theory and Applications, Regional Conference Series in applied mathematics, SIAM, Philadelphia (1977) | MR | Zbl

[9] H O Kreiss, J Oliger, Stability of the Fourier method, SIAM J Num An ,16, 3 (1949), 421-433 | MR | Zbl

[10] J L Lions, E Magenes, Non Homogeneous Boundary Value Problems and Applications, Springer Verlag, Berlin (1972) | Zbl

[11] Y Maday, A Quarteroni Legendre and Chebyshev spectral approximation of Burgers equation, Numer Math, 37 (1981), pp 321-332 | EuDML | Zbl

[12] Y Maday, A Quarteroni, Spectral and pseudo-spectral approximations of Navier-Stokes equations, SIAM J Numer Anal, 19 (1982), pp 769-780 | Zbl

[13] R E Nickell, D K Gartling, G Strang, Spectral decomposition in advection-diffusion analysis by finite element methods, Comp Meths Appl Mech Eng 17/18 (1979), 561-580 | Zbl

[14] G Szego, Orthogonal Polynomials, AMS Colloquium publications, vol 23,AMS, New York (1939) | JFM | Zbl