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ON THE RATE OF CONVERGENCE
OF SEQUENTIAL UNCONSTRAINED

MINIMIZATION TECHNIQUES (*)

by Ch. GROBMANN (1), A. A. KAPLAN (2)

Communicated by P. J. LAURENT

Résumé. — Dans cet article, sur la base des relations étroites entre les solutions des problèmes
auxiliaires de la méthode de pénalité et le comportement du problème original à Végard des perturba-
tions un principe relativement général~varêtre dérivé pour déterminer^ordre de~convergence de cer-
taines méthodes successives pour la minimization non contrainte. Vaccès présenté va être appliqué
aux méthodes de pénalité et aux méthodes de centres. De plus à Vaide de Vordre de convergence
certaines règles pour le choix des paramètres des méthodes de pénalité régularisées vont être données.

Summary. — Basing on the close relation between solutions of the auxiliary problems arising in
sequential unconstraint minimization techniques and the behaviour of the primai problem subject to
perturbations in the right hand sides ofthe inequality constraints in thispaper we dérive a quite gênerai
technique for estimating the rate of convergence of sequential unconstraint minimization methods.
The given approach is applied to penalty methods and methods of centers. Furthermore parameter
sélection rulesfor regularized penalty methods arefounded by means ofthe given estimations for the
rate of convergence.

1. INTRODUCTION

The transformation of a given nonlinear programming problem

fo(x) -> min ! subject to x e l , ft(x) ^ 0 , i = 1,..., m (1)

into a séquence of unconstrained minimization problems

T(x, ƒ ) -> min ! subject to xeX (2)

forms and effective tool for handling constrained optimization problems
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268 CH. GROBMANN, A. A. KAPLAN

(see e.g. [4, 6, 9, 20, 26]). Thereby estimations for the rate of convergence play
an essential rôle as well for theoretical investigations as for the control of the
parameters in practical applications of the related method.

First resuit s on the rate of convergence in the convex case are given by
Bittner [2] and Eremin [3] for the logarithmic barrier method and for the qua-
dratic penalty method respectively. Poljak [24] dérives estimations of the
local rate of convergence for quadratic penalties in nonconvex problems by
means of the implicit function theorem. Using continuous parameter imbedding
Fiacco/McCormick [4] prove differentiable trajectories of solutions to exist
for some spécifie penalty methods under additional conditions. This leads to
the rate of convergence of the related methods. On the base of the Kuhn-
Tucker-conditions Mifïlin [22] introduces a quite gênerai technique for getting
convergence bounds of nonlinear programming algorithms and he applies this
in [23] to methods of centers. Another approach using directly parameters
of the given optimization problem (1) to estimate the rate of convergence
was proposed by Kaplan [14,15]. Quantitative convergence bounds in methods
of exterior centers are derived in [6, 19, 21] by means of different techniques.
The rate of convergence of augmented Lagrangian methods has been investi-
gated by Gol'stejn/Tret'jakov [5], Bertsekas [1], Kort/Bertsekas [17], Rocka-
fellar [25, 26] and Skarin [27] e.g.

Basing on the close relation between solutions of (2) and the behaviour of
the problem (1) subject to perturbations in the right hand side of the inequality
constraints (for the case of augmented Lagragians compare [26]) in this paper
we dérive a gênerai technique for estimating the rate of convergence of sequen-
tial unconstrained minimization methods.

In the sequel we only investigate solvable nonlinear programming problems
(1) with a closed subset X ^ Rn and continuous functions ft :X -• R1

9

i — 0, 1,..., m. To short our notation set v = ( ° I with £ = (v l9,.., vm)T

for any veRm+1 and we define /(x) = (/0(x), ^(x), .., /m(x))r. Thus, f(x)
especially dénotes fjx) = (^(x),..., fjx)).

Let be selected an arbitrary set Y of parameters and a generating function
E : 7 x Rm+1 -> R-= R1 u { + oo}. We define a related auxiliary func-
tion T :X x Y -> ÏT := £ u { - oo} by

T(x, j;) = inf { E(y9 v)\v> / ( x ) } for any x e X, yeY . (3)

Now, most of the sequential unconstrained minimization techniques (SUMT)

can be represented by the following scheme :

step 1 : Select a starting point y1 e Y. Set k •>= 1.

R.A.I.R.O. Analyse numérique/Numerical Analysis



SEQUENTIAL UNCONSTRAINED MINIMIZATION 269

step 2 : Détermine a solution xk of the auxiliary problem (2).
step 3 : Compute a new parameter yk+1eY and set k := k + 1. Go to

step 2.

The various special algorithms we get from the gênerai scheme by specifying
the parameter set Y, the generating fonction E and by an appropriate sélection
of the updating rule defining the séquence { y* } a Y of parameters in step 3
of SUMT (see [4, 9, 20] e.g.).

2. DUALITY AND ESTIMATIONS VIA COMPARISON PROBLEMS

Let us define the set

Ö = {veRm+1\lxeX with ƒ(*) < u } (4)

characterizing the given optimization problem (1). Now, we introducé a séquen-
ce of companson problems

E(/, v) -> min ! s.t. veQ (5)

related to the auxiliary problems (2) of the algorithm under considération.
Let dénote % : Rm -• R the primai fonction (or optimal value function) of the
problem (1), that means

X(u) = inf{ /0(x) | x e X, ƒ ( x ) < u} for any ueRm.

Directly from the définitions of the function % and of the set Q we get

6 c epi x and Q = epi x . (6)

Thus the comparison problem (5) can't be solved directly. However, the
close relation between the problems (2) and the problems (5) established in
the following lemma forms an effective base for the investigation of sequential
unconstrained minimization techniques via the comparison problems (see
[7, 8]).

LEMMA 1 : For anytparameter y e Y the equality

inf { r (x , y) | xeX } = ïnî{E(y, v)\veQ} (7)

holds. Ifthere exist some solution x(y) ofthe auxiliary problem

T{x, y) -> min ! s.t. xeX (8)
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270 CH. GROBMANN, A. A. KAPLAN

and some solution v(y) of the related problem

E(y, v) -> min ! s.t. v > f(x(y)) (9)

then v(y) also solves the comparisonproblem

E(y, v) -> min ! s.t. veQ. (10)

Iffurthermore v(y) is Q-regular, that means

t > ( 3 > ) - e ( l , 0 , . . . , 0 ) r # e forany e > 0 , ( 1 1 )

then x(y) farms a solution of the perturbed problem

fo(x)^min\ sx xeX, £(x) < v(y). (12)

For any y e Y we dénote

x(y) = sup { t G Rl | E(y(t, 0, .„, 0)r) < inf E(y, v) } . (13)

To develop a gênerai duality theory the set Y and the function E are assumed
to satisfy the following condition : (F). For any y G Y and arbitrary veQ
not being g-regular the inequality E(y, v) > inf £(>>, w) holds.

As shown in [8] this results in the weak duality estimation

sup { x(y) | y e Y } < inf { /0(x) | x e X, £(x) < 0 } . (14)

Thus the problem

x ( y ) - > s u p ! s.t. yeY (15)

can be considered as a dual problem to (1). If especially

Y = R™ and E(y, v) = v0 + yT v

are chosen then the related auxiliary function T equals the ordinary Lagran-
gian L(x, y) = fo(x) + yT £{x) of (1) and (15) coincides with the well known
Lagrange dual problem.

We remark that property (F) automatically holds if the generating function E
has the following structure

E(y9 v) = v 0 + e(y, v) f o r a n y y e Y , v e R m + x . (16)

Whereby e : Y x Rm -* R dénotes a given function.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The aim of this paper consists in constructing a set A cz Rm+1 containing
the set Q and such that the problems (approximated comparison problems)

E(y> v) -• min ! s.t. v e A

can be solved explicitely. If similary to T we define

xA(y) = sup I t e R1 | E{y9t, 0, ..., 0)T> < mf E{y, v}\ (17)

then Q a A results in

forany yeY. (18)

LEMMA 2 : Let (x*~, u*) be a sadiïïe point of the Lagrangian L rélated'io (I).
Then the set

2 * = {veRm+1\v0 + u * T £ > x(0) }

contains the characteristic set Q.

Proof : Let dénote L(u) — ihf L(x, u) and L(x) = sup L(x, M). Since
x e X ueR™

(x*, u* ) forms a saddle point of the Lagrangian L we get

I(x*) = L ( K * ) . (19)

Furthermore the equality

X(0) = M**) = I (x*) (20)

holds (see [9] e.g.). Let dénote

w0 + uT vv, if w ^ ƒ (x)
M, w) = ,

+ oo , otherwise .

Then we get

L(x,u)~ inf K(x, u, w) forany x e l , u e K+ .
weR™+1

vol. 17, n° 3, 1983



272 CH. GROBMANN, A. A. KAPLAN

This results in

L(u*) = inf L(x, u*) = inf inf K(x, u*9 w) = inf inf K(x, w*, w)
~~ xeX xeX weRm+1 weRm+1 xeX

= inf inf {Mx)+u*Tw}
w e Rm x e X,£(x) ^ w

= inf { x(w) + w*T w } ^ %(£) + w*r £ for any D G T . (21)
weRm

Let be i; e Q. Using (6) we get %{v) < u0. With (19)-(21) this leads to the want-
ed inequality

x(0) < v0 + M*T J; for any v e Q . •

As a trivial conséquence of lemma 2 we get the well known estimation

X(0) < /o(x) + w*r ƒ (x) for any x e X . (22)

If the fonctions E(y, .) are convex for any fixed y e Y and (1) forms a convex
programming problem, i.e. the set X and the functions /£, i = 0, 1,..., m are
supposed to be convex, then to each solution vk of the comparison problem (5)
a related tk G R+ + 1 exists such that

t k T ( v - v k ) ^ £ 0 f o r a n y v e Q .

/x(0)\
With t> - ( j G g this results in

Moreover, if t% ^ 0 then we get the lower bound

k ^ l
k T (23)

for the optimal value %(Q) of the given problem (1). The inequality (23) extends
the duality bounds known from penalty methods ([2, 4] e.g.) to more genera!
sequential unconstrained minimization methods. We remark that the estima-
tions proposed by Mifflin [22] are closely related to the inequalities (22), (23).

Now, we proceed in getting the rate of convergence for some spécifie methods
by explicitely solving the approximated comparison problems with A = Q*.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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3. PENALTY METHODS

In this chapter we dérive convergence bounds for some special penalty
techniques. Thereby a penalty method is characterized by an explicitely given
séquence { / } c y of parameters and the typical penalty property

0 , if ƒ (x) < 0
4-00, if / ( x K O .

For further properties and details of penalty methods, especially gênerai
convergence theorems, the interested reader is refered to [4,9] e.g.

In the sequel in our paper we suppose the Lagrangian related t i the primai
problem (1) to possess a saddle point (x*, u*)e X x R™. Basing on the lem-
mata 1, 2 and on the relations (16)-(18), now, we underestimate the generalized
dual value T(y*) in sonae methods.

First let us investigate the p-th order loss function generated by the function

Thereby we set Y = int R+ and p dénotes some fixed parameter. From (3)
we get the related auxiliary function

T(x, y) = fo(x) + I yt max* { 0, ft{x) } . (25)

THEOREM 1 : Let be defined T by (25). T hen for any y e Y the inequalities

x(0) - (P - i) £ yt~p ( 4 T < inf T& y) < x(0) (26)

with - + - = 1 hold.
p q

Proof : Due to lemma 1, the définition (13) of the dual function and (24)
we have

x(y) = inf T{x, y) for any y G Y . (27)
xeX

Furthermore E possesses the structure (16). Thus we get the right inequality
of (26) from (27) and the weak duality estimation (14).
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274 CH. GROBMANN, A. A. KAPLAN

Lemmata 1 and 2 lead to

inf E(y, v) ^ inf E(y9 v) = inf T(x, y). (28)

vsQ* veQ xeX

Now, we solve explicitely the linearly constrained problem

E{yy v) -> min ! s.t. v0 + u*T v ^ %(0). (29)

Due to (24) the optimal value of this problem equals the optimal value of

X(0) + £ Oi I vt \> - uf üj - min ! s.t. veRm, (30)

Using the convexity and separability of the objective function we get

for the optimal solution iï(y) of the problem (30). With

vo(y) = x(0) - w*r£(y)

this leads to

p

tof « , , .) - £(,, «„) .

Combining with (28) we get the left inequality in (26).
We remark that the estimation

inf { fo(x) + r £ max2 { 0, ft(x)} 1X(0) - -L || u* ||2 ^ inf { fo(x) + r £ max2 { 0, ft(x)} 1 < x(0)
H r l J

given by Eremin [3] is contained in theorem 1 withp = 2 and yt = r^ i = 1,..., m.
Now, we consider the exponential penalty function

= fo(x) + I ^ exptj', ƒW) . (31)

Y = int K+
2m (see [13] e.g.).

R.A.LR.O. Analyse numérique/Numerical Analysis



SEQUENTIAL UNCONSTRATNED MINIMIZATION 275

THEOREM 2 : Let the auxiliary function T be given by (31). Then the estimation

z(o) + Y T \ 1 ~ lQ(ir-)} < inf T^^ * x(o) + t ^ r

for any ysY holds. Thereby dénotes I+ = { i e { 1,..., m } | uf > 0 }.

: The right inequality is a conséquence of the weak duality and

= inf T(x,y)-

Similary to the proof of theorem 1 we estimate the optimal value of the pro-
blem

X(0) + £ [ — exp(yt vt) - uf J -> inf ! s.t. v e Rm . (32)

This can be carried out componentwise. Let be uf = 0. Then holds

vt) — uf vt ^ 0 for any u£ e R1 .

If «f > 0 then the related component of (32) is minimized at

Thus we get the optimal value

X(°) + Z — U " ln ( "^~ ) a n d t h e w a n t e d inequality .
ieJ+ ïi L V^ + m/J

A well known disadvantage of the exponential penalty function (31) consists
in the rapid growth of the exponential function. To overcome this Kaplan [16]
proposed the function

T(x, y) = fo(x) + X yJifiix) + V/i 2W + yi+m) (33)
i = l

with 7 = int Rlm. If additionally the parametersy b yi+m are adjusted accord-

ing to yi+m = y[2~Q with some fixed 9 ^ 0 from (33) we get

T(x, y) = ƒ„(*) + I ƒ,(ƒ,(«) + y/fjlx) + yf2-») (34)
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276 CH. GROBMANN, A. A. KAPLAN

the method earlier investigated in [14, 15]. The advantage of (33) consists
in avoiding yt, i = 1, ..., m to tend to infinity. This results in a technique being
more numerically stable than (34).

THEOREM 3 : Let the auxiliary function be given by (33). Then the estimation

X(0) + E V«f yi+m{2 y, - uf) *£ inf T(x, y) < X(0) + E yt V ^
X

holdsfor any y e Y with yt > - uf, i = 1,..., m.

Proof: Usingx(y) = inf T(x, y) - £ yi\/yi+m and (14) we get the second

inequality. The first one we get by determining the infrmal value of

X(0) + I \_yfa + y/vf + yi+m) - uf i>J -> inf ! s.t veRm (35)

and the inequality (28).
If uf = O then y.(t?. + V ü f + ^ + J - u? î  > O for any ^ e i ï 1 . With

lim yi(vi + y/vf + yI + m) = 0 this leads to

*(«* + y/vf + yi+m) ~ uf o j = 0 (36)

in this case.

Now, let be yt > •= uf > 0. Then differentiating the i-th component of the
objective function in (35) we get the necessary and due to the convexity also
sufficient condition

for the related minimizer vt(y). This results in

= Uf

(37)
Vi — ui

and
iyfrt + > f + yi+J - "T «J = Vw? ^ + m ( 2 ^ - «f) • (38)

ViGR1
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SEQUENTIAL UNCONSTRAINED MINIMIZATION 277

With E(y, v) = vo+ £ y fa + Jvf -f yi+m) and (36), (38) we get

inf E(y, v) = x(0) + £ Juf yi+m(2 y, - uf).
veQ* i = i

Using (28) this results in the wanted inequality. •
Now, let us discuss the influence of the parameter y e Y in the auxiliary

function (33) and in the related duality estimations. If the parameter séquence
{ yk} <= 7 is selected such that

lim $ = + oo and lim $
fc fc fc-*-00

= O, i — l,..., m

then the séquence { T(x, y*)} uniformly approximates the linear loss penalty
function

m

ƒ<>(*) + E 2 y \ max { O, ƒ•(*) }
É = l

in the sense that the différence uniformly tends to zero. On the other hand it
is well known that any solution of an auxiliary problem

m

/ o w + E %max{°> ffc)) - > m i n ! s-1- xeX (39)

also solves the nonlinear programming problem (1) if yt > «f, f = 1,..., m
holds (see [9] e.g.). Now, if we select

= -y. and y = 0 , i = 1,...,

then the method (2), (33) approximates the exact penalty technique (39).
A more gênerai approach to the approximation of (39) including also regula-
rization techniques was given in [16].

Now, let us investigate the quasi-barrier method proposed by Hamala [11].
As the parameter set Y we choose Y = int R ™ and the generating function E
is defined by

(40)
+ oo , otherwise .
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278 CH. GROBMANN, A. A. KAPLAN

Thereby p e (0, 1) dénotes some fîxed parameter. Then according to (3) we
get the related auxiliary function

+ oo , otherwise .

THEOREM 4 : Let be T defined via (3), (40) and let w* > 0. Then the estimation

X(0) + ̂ l l ^ f; ( A Ï ^ inf

any j e Y holds.

/py-V^P
Proof : The point vt(y) — — — 1 minimizes the function

\ufj
<Pi(vi) " — uf vi — yt(— Vi)p subject to vt e (— oo, 0], Similary to the proofs
of the previous theorems with

we get the inequality stated above. •

Remark : Since — (— a)p is not bounded from below for a ^ 0 we used
the condition u* > 0 to guarantee the boundness of inf T(x, y). The condi-

x e X

tion u* > 0 can be relaxed if the set X is bounded e.g. Because of
dom x <= { u ^ û } with ut = min f((x), i = 1,..., m we have

X(0) - I K Ûf + ̂ - ^ P1^ I f - 4 ^ < min T ( * ' ^ < X(O)

in this case.
Let us consider the barrier technique generated by

m

l + oo , otherwise,

7 = int R+ and /? > 0 fixed. Because of e{y, 0) = + oo the dual value

R.A.I.R.O. Analyse numérique/Numerical Analysis
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x(y) equals — oo and can't generate any upper bound to inf T(x, y). Similary
xeX

to the previous theorems some lower bounds can be proved by means of the
lemmata 1, 2.

THEOREM 5 : Let the auxiliary function T be defined by (3), (41). Then the
estimation

X(0) + £±1^ t u*7*1 yt1 < inf T(x, y)
P i= l x*X

for any y e Y holds.

In the method generated by (41) as well as in other barrier methods the
technique presented in chapter 2 fails to give upper bounds fdr the value
inf T(x, y). A possible way to overcome these troubles consists in the appli-

xe X

cation of appropriate perturbations. Similary to (13) we define for any yeY,
u e W* tEe value

i(y, u) = sup 11 e R1 \ EU Q j < inf E(y9 v) j .

The function f generalizes the dual function x such that

= ï(y, 0) for any y e Y

holds.
Let E possess the structure (16) and let exist some u e Rm,u < Owithx(w) < + oo.
Then, from lemma 1 we get the estimation

*()>, u) ^ %{u)

and furthermore

f(y, M) = inf T(x, y) - e(y, u).
xeX

This results in the upper bound

inf T{x,y) ^x(u) + e(y9 u).
xeX

This inequality can be useful applied to get convergence bounds as exemplified
in the following theorem.

vol. 17, n° 3, 1983
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THEOREM 5a : Let the given optimization problem be convex and let exist
some x e X with / (x ) < 0. Let the auxiliary function T be defined by (3), (41).
Then for any s e (0, 1], y e Y the estimation

X(0) + P+J-pfc Y « T ^ yT1 < inf T(x, y) <
P i=l xeX

< (1 - 6)x(0) + e/0(5c) + £ yie-"(- Jtx))-».

If we chose yk
t = ak -• + 0, i = 1,..., m and efc = al with some a > 0

then optimal asymptotic bounds we get if max { ot, 1 - ap } is maximal.

This holds for a = .
p + 1

In a similar way the theorems 2, 3 can be refined and we get also asymptotic
bounds.

Up to now in this chapter we only estimated the generalized dual value x(y)
or the infimal value inf T(x, y). Now, we outline a way to get also bounds for

xeX

the value fo{x(y)) of the objective function f0 of (1) at the minimizers x{y)
of the auxiliary prob^ems

T(x, y) -> min ! s.t. x e l .

Let us assume that the set X and the functions f{, i = 0, 1,..., m are convex.
Furthermore let be the generating function E of the typ (16) with some func-
tion e being convex and differentiable with respect to v_ on its effective domain
for any fîxed parameter y e Y.

Let dénote vk an optimal solution of the comparison problem

£ ( / , v) -+ min ! s.t. v e Q

and we set

wk = Vve(y\vk). (42)

From the necessary optimality condition we get

t *r^ _ vfcj ^ 0 for a n y v e Q

with tk = ( . Using (23) this results in

X(0) ^ /o(x") + wkT £k , k = 1, 2, . . . . (43)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Due to the convexity of e(y9 .) and (42) the point £* solves the unconstrained
problem

e ( / , £ ) - w* ri>-• min ! s.t veRm. (44)

Similary for fixed w e int R+ we consider a séquence of problems

e(/> v) - wT v -+ min ! s.t. veRm. (45)

We assume that the properties of the fimction e guarantee its solvability and
dénote by vP(w) a related solutioa If some monotonieity of wT t^(w) is known
then w*r £k can be replaced by w r vk(w) in (43) to get upper bounds of /0(x*).

As an example we investigate the penalty fonction (34). The related func-
tion e is given by

-f

Let be w e int jfi^ fix6^ then Som (37) wïth y i+m = yt
 2 B, i = 1,..., m we get

the solution £*(w) of (45) from

«f(w) - (w, - y?) W 2 yf - w , ) ] * ^ 1 * , î = 1 , . . . , m

if fe is large enough. This results in

m _l±fi| 1/ iv \ / w \ 2

(46)

We remark that fhïs equality also holds if wt = 0 for some i and the i;*(w)
dénotes an arbitrary real number.

Any accumulation point of the séquence {x*5 w*} can be shown (see [9]
e.g.) to be a saddle point of the Lagrangian related to (1). Let be { x \ w*}
bounded. Without loss of generality we can assume that lim w* = u* holds.

fc-KX>

Let dénote w(e) e int R+ the vector defined by

wt{e) = «f + e , i = 1,..., m

where e > 0 is an arbitrary positive number. According to (46) and
lim $ = + oo some index kx(i) exists such that

- w(e)r £k(w(e)) > ~ w r Ü*(W) for any fc ^ k^e) and 0 ^ w

(47)
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holds. From lim wk = u* and w(e) > M* we get an integer k2(e) with

w* < w(e) for any k > k2(z).

Using (43), (46), (47) this results in

(y*)~ 2 (ui

fotf) - X(0) < £
2 - ^

for any k ^ max { kv k2 }

Now, the continuity of the right hand side with respect to 8 -> 0 leads to

limrk* [/0(x») - x(0)] < - ^

where rk = min $ dénotes.

To get asymptotic lower bounds we remember that vke Q,k — 1,2,..
due to lemma 1 holds. Using lemma 2 we get

/o(*k) ~ X(O) > - w*r i for any k

and with (46) the inequalities

- x(0) > Z

This results in

Hms t
2 [/0(x») - x(0)] > -7=

where dénotes st = max

The technique applied above to get convergence bounds for the séquence
{ /o(xfc) } related to the function (34) can be used in the same way to establish
the rate of convergence of other penalty methods. For the function (25) as welî
as for the function defined by (3), (41) this has been done in [8].
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4. PARAMETER SELECTION IN REGULARIZED PENALTY TECHNIQUES

A possible modification of penalty methods to improve the numerical
stability as well as to force the convergence consists in introducing an addi-
tional regularization term in the sensé of Tihonov [28]. The principle structure
of the generated subproblems can be described by

T(x, ƒ ) H- pk || JC ||2 - min ! s.t. xeX (48)

where T dénotes an auxiliâry fonction of penalty typ as considered in chapter 3.
Regularized subproblems (48) in penalty methods are considered in [10],
[12], [13], [18], [29] e.g. To get convergence results the penalty parameters /
and the regularization parameters pk are to be adjusted in an appropriate

manner. In this chapter we apply the convergence bounds for
" xeX

proved in 3 to dérive parameter sélection rules for regularized methods. In the
folLowinĝ  theorem some condition using dual informations to control the
séquences { y* }, {pk} will be given.

THEOREM 6 : Let T dénote an auxiliary function generated by means of a
function E of the typ (16) and let dénote { y* } a séquence such that the properties
of a penalty technique (see 4, 9 e.g.) and e(y*, 0) < H- oo hold. Furthermore let be
Iim pk = 0 and

Then any séquence { z* } of solutions ofthe regularized problems (48) is bounded
and each accumulation point ofiz*} solves (1).

Proof : Let be z* some solution of (48). Then the inequalities

inf T(x, / ) + ft || z* ||2 < Ttf, / ) -h Pk || 2* ||2
xeX

< T(x, / ) + pk\\ x |!2 for any x e X (50)

hold. Especially with x = x* where x* dénotes an arbitrary solution of (1)
weget

inf T(x, /) +pk\\2f ||2 < T(x*, / ) + pk || x* ||2 . (51)
jceAT

/v(0)\

Since x* forms a solution of (1) we have /(x*) < I 1.
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Now, (3) leads to

, / ) = inf £ ( / , v) < x(0) + e(f, 0). (52)

Furthermore (7), (13) and (16) resuit in

T ( / ) - inf T(x, ƒ ) - e(f, 0). (53)
xeX

Combining (51)-(53) we get

II z* II2 < II ** i|2 + 1 [X(0) - T ( / ) ] for any k .

Now, by condition (49) the séquence { z* } is bounded and each of the relat-
ed accumulation point z* satisfîes

II z* II < II x * || . ( 5 4 )

Because of { T(., / ) } forms a séquence of penalty functions and lim pk = 0

holds the séquence { Fk } with

Fk(x)= T(x5 y » ) + A || x ||2 forany x e l , k = 1, 2,...

also forms a penalty function séquence (see [4], [9] e.g.). Thus each accumulation
point z* of { z* } solves the nonlinear programming problem (1). Because of (54)
the point z* forms a norm minimal solution of (1) since x* denoted an arbi-
trary solution of (1). •

Remarks : If (1) forms a convex programming problem then the related
norm minimal solution (Euclidean norm) xN is unique. With theorem 6 this
results in

lim z* = xN.

Furthermore the existence and uniqueness of the solutions z* of the regularized
subproblems (48) is guaranteed if the functions T(., ƒ ) are convex and lower
semicontinuous.

If in convex programming the functions T{.^) are convex and differen-
tiable then the stopping criterion

) + 2pk£\\<Bk, fe = 1, 2,...
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can be used to détermine approxhnate solutions z£ of the subproblems (48).

Choosing {e k} such th

convexity of Fh we get

Choosing {e k} such that ek > 0 and lün — = 0 hold then by the strong
kP

Hm |[ 4 - 2* || = 0
fc-Kö

and therefore lim z£ = xN holds.
k-*co

On the base of duality bounds given in chapter 3 we dérive parameter sélec-
tion rules for some spécifie penalty methods.

Let us consider the auxiliary function (24) being generated by means of

(55)

E(y,

with

v) =

1

P

1

+

= 1.

0 s

't 1 »i IP»

*X(0)

/> >

- t ( .

1.

y)

Then

< ( P

(26),

- 1 )

(27)

m

i = l

result in

i / *^

Let dénote rk — min yj. Using (55) we get

= + oo

as a condition being sufficient for (49). This is just the same condition as in
[30, theorem 3] derived there directly without duality bounds,

Now, let us consider the exponential penalties defîned in (31 ). Using theorem 2
and

TOO = inf T(x, y) - f)

in this case we get

(56)
i=l / t i e / + ^i L V t + m/J

S i m i l a r t o [ 1 3 ] l e t u s s e t

/. = tk
2
 ; ^ + m = Sjk tfc

2 , i = l , . . , m ( 5 7 )
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with some séquences { sk }, { tk } satisfying

sk > 0 , tk > 0 , sk tk > 1 for k = 1, 2,... (58)

and lim tk = + oo, lim sky/tk = 0.

If we select

A = sfcV^> k = !>2> • (59)

then condition (49) holds. Indeed, (57)-(59) result in

lim ^ £ = 0, lim pk yj= - + oo and lim l n ,m = 0,

i = l , . . ,m. With (56) this guarantees (49) to hold.
It is to remark that (59) differs from the rule proposed in [13] because of

relaxing the condition

{ x e X | £(x) < 0 } * 0 . (60)

On the base of (50) and (60) the condition (49) can be replaced by

lim - I T(x\ ƒ ) - inf T(x5 / ) ] = 0 . (61)

Thereby { xk } cz X dénotes an arbitrary but appropriate séquence with
£{xk) < 0, k = 1, 2,... and lim xk = x*.

Let the set X and the fonctions ft be convex. Furthermore let x G X dénote
a point with ƒ (x) < 0. Now, we defîne { fi* }, { xk } by

xk = Xkx + (1

where { A,fc } <= (0, 1] dénotes some séquence tending to zero.

From ( ) > f(xN) a n d t h e convexity of ƒ we get

vk ^ f(xk) forany k = 1,2,....
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Now, (3)and(31)leadto

T(x\ ƒ ) = inf £ ( / , v) ^ inf £ ( / , v)
v > f(xk) v'èv*

= \ v0 + (1 - ÀJ x(0) + î ^r= exp( tf X, fft).

Using (57), (58) and theorem 2 this results in

0 ^ T(x\ yk) - inf T(x, / )
xeX

- x(0)) + t h exp(ïfc
2 Xt »,) - £ £ [ l - In

If we choose pk — j - like in [13] and Xk = tk
 3/2 then (61) holds. Therefore

the related regularized method converges.
It is to remark that the approach presented hère simplifies the proof of

convergence and shows the natural interaction between the rate of conver-
gence and parameter sélection rules of regularized techniques.

If the auxiliary function T is given by (33) then we have

x(y) = inf T(x, y) - £ yt sf^7m (62)
xeX j f i

and theorem 3 results in

0 < X(O) -

Let be y\ = rk and yf+m = rk
 2 e, i = 1, „., m ; k = 1, 2,... with some séquence

{ rk } of positive reals tending to infinity. Then condition (49) can be forced by

lim pk r«12 = + oo .

Similary to the exponential penalties on the base of (61) the parameter sélec-
tion rule can be refined if the Slater condition (60) holds. In the same way
regularized barrier techniques can be derived from theorem 5.
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5. METHODS OF CENTERS

Let the nonlinear programming problem (1) be convex and let the Slater
condition (60) hold. We consider the methods of centers generated by the
functions

!

m

E (tt - vi)~pi i f v < y 3
i=o p > 0 (63)

+ oo , otherwise ,

or

- E l n ( f l - i;,), if i>< y

i=o (64)
-f oo , • otherwise

respectively.
Thereby dénotes Y = { y e Rm+1 \y = 0, y0 > x(0) }.
Starting with an arbitrary y1 e Y in the method of centers (see [9], [20], e.g.)

the séquences { xk } and { ƒ } are mutually generated according to

yko+1 =/o(**)> * = 1,2,... (65)

whereby xfc dénotes some solution of the related auxiliary problem (2).

THEOREM 7 : Let { xk, yk } dénote a séquence generated by a method of

centers with thefunction (63) or (64) and let {xk} converge to x*. Furthermore

let the optimal Lagrange multiplier u* at x* be unique. Then holds

lim
- X(0) ! + £ (uf)FTi

t=i

or

/>+ ^ , . m y g + 1 - x ( Q ) < TT- yko+1 - x(Q) < _£_

- z ( 0 ) " k ™ ^ -

?+ = card ƒ+, p° = card { i | /£(x*) = 0 } (ƒ t/ie functions (63) or (64)
respectively are used.

Proof : Due to the strict convexity and monotonicity of £(y, .) and due
to lemma 1 we get

vk=f(xk)9 fe= 1,2,... (66)
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for the solutions vk of the related comparison problems (5). The properties
of E result in f(xk) < ƒ , k = 1, 2,...

Let us define

\vk), k= 1,2,... (67)

Then t% # O for any k holds. We set wk = — 1 \ k = 1, 2,...

Now, using (66), (67) we get

and this leads to /

- fi(xk) = |>o - ƒ<>(**)] (wf )" *+*, i = l, », m ; k = 1, 2, ... (68)

Thereby the function (64) is included with p = 0. According to (22), (23) the
inequalities

- w" f(xk) < fo(x
k) - x(0) < - u*r ƒ(**), k = 1, 2,...

hold. With (68) we get

lyko - X(O) + X(O) -/o(x f c)] E (w*)7*1 ^ /o(x*) - X(0) ^
t = l

Due to (65) this results in

<y\ ^ N - ^ ^^ *=1.2,~. (69)
ï + f; (wf

1 = 1

From the theory of the methods of centers we know x* to form a solution
of (1) the uniqueness of u* leads to

lim vvk = u*

(see [4] e.g.). Now, (69) proves the wanted inequalities. •
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Remarks : The idea used in the proof of theorem 7 is similar to [22], [23]
and shows the close relation between the inequalities (22), (23) and the esti-
mations given by MIFFLIN.

If the optimal multiplier w* is not unique the theorem 7 remains valid
with uf — lim w*, i = 1,..., m. Assumption (6) guarantees { wk} to be

bounded.

6. CONCLUDING REMARKS

In this paper we sketched the technique of deriving convergence bounds
via comparison problems and related estimations. Here we investigated the
penalty methods and the methods of centers more in detail Basing on the
same idea convergence bounds of the methods of exterior centers (see [6])
as well as of the augmented Lagrangian methods (see [8]) are available also.
Furthermore, starting from the close relation between sequential uncon-
strained minimization techniques and the behaviour of the optimal value of
the primai problem subject to perturbations in the right hand side of the
inequality constraints new concepts of updating rules for the parameters in
augmented Lagrangian methods can be derived such that the related method
superlinearly converges.

It should be mentioned that computational results showed a good coinci-
dence between the theoretical convergence bounds and numerical test results
(compare [9]).

If the user is interested in the inequalities derived in the chapters 3 and 5
from the quantitative point of view and not only qualitative then the optimal
Lagrange multipliers play an essential rôle. In gênerai these multipliers are
not available. By means of the sequential unconstrained minimization tech-
niques approximations of the Lagrange multipliers are generated and the
magnitude of the multipliers can be estimated. In convex programming pro-
blems satisfying the Slater-condition (60) upper bounds of each component
of the Lagrange multipliers are available. Basing on this estimations we get
a close relation to the convergence bounds derived by Kaplan [14, 15].

Finally let us remark that the principle sketched in this paper can be applied
to more gênerai problems also, for instance in partially ordered Hilbert-
spaces (for augmented Lagrangians see [26]). In this case, however the com-
ponentwise optimization used in chapter 3 e.g. to solve the approximated
comparison problems has to be replaced by the investigation of the generating
functional E under one linear inequality constraint.
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