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R.A.I.R.O. Analyse numérique/Numerical Analysis
(vol 17, n° 3, 1983, p. 311 à 326)

ON THE VIBRATION PROBLEM
FOR AN ELASTIC BODY

SURROUNDED BY A SLIGHTLY COMPRESSIBLE FLU1D (*)

by R. OHAYON (*) and E. SANCHEZ-PALENCIA (2)

Abstract — The vibration problem for au plastic -bmmdeditody immersed itu&n idealfktid
small compressibility (associated with the small parameter s ~> 0) is considered in the framework
of scattering theory. ït is shown that the scattering frequencies converge as e -* 0 to the eigenfre-
quencies of the self adjoint problem associated with an incompressible fluid. The asymptotic behaviour
of the eigenfrequencies for small e is given via the implicit function theorem. Some gênerai considéra-
tions about the physics of the problem and expérimental results are also given.

Résumé. — NOMS considérons le problème de vibration d'un corps élastique borné plongé dans
un fluide idéal de petite compressibilité (associé au petit paramètre e -* 0) dans le cadre de la théorie
de la diffusion (scattering). Nous montrons que les fréquences de scattering convergent lorsque s ^ 0
vers les fréquences propres du problème autoadjoint correspondant à un fluide incompressible. Le
comportement asymptotique des fréquences propres pour e petit est obtenu via le théorème de fonctions
implicites. Nous donnons aussi certains résultats expérimentaux et des considérations générales sur
le problème physique.

I. GENERALITIES ABOUT THE PHYSICAL PROBLEM

It is proposée to investigate the problem of the low-frequency forced vibra-
tions of a structure immersed in an infinité liquid medium.

The main response parameters are :

— the displacement field at any point of the structure,
— the pressure field in the neighbourhood of the structure (the so-called

near-field pressure),
— the far-field pressure,
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312 R. OHAYON, E. SANCHEZ-PALENCIA

as functions of the excitation frequency (considérée as a continuously increasing
parameter).

It should be emphasized that the expérimental analysis follows the above
scheme by using displacement and pressure déviées, the excitation frequency
parameter being controlled by the experimentalist through appropriate devices.

If L (resp. A) dénotes a characteristic length of the structure (resp, the
wavelength of the radiated wave), the low-frequency range considered here
corresponds to the case A |> L. Expérimental analysis carried on test specimens
of révolution immersed in an " infinité " liquid medium with a free surface
— for example, ring-stiffened cylinders — have shown that, for low-frequency
vibration, the response curves present " resonant peaks " similar to classical
slightly damped conservative linear Systems analysed theoretically through
asymptotic expansions [2], Moreover, the values of the frequencies corres-
ponding to those peaks were " practically " the same for the three field para-
meters described above. Therefore, a new set of response parameters is :

— the " resonant frequencies " corresponding to the successive peaks
of the response spectrum and the corresponding structural displacement
field and liquid near- and far-field pressure.

Let us now discuss the origin of the damping of the fluid-structure coupled
system-.

Refering again to the expérimental analysis, for example for a test specimen
of 1 m height and 03 m of radius, for a range of low=frequency between 40 Hz
and 120 Hz, the damping effect s arising either from the radiation of gravity
waves or from the viscosity of the fluid were negligible in comparison with
the two other sources of damping, namely the one occuring in the structure
dissipation and the one arising from the compressibility of the liquid (radia-
tion). It should be recalled that for bounded fluid-structure Systems, the System
is conservative even if the fluid is compressible [8, 10], which is not the case if
the external fluid volume is infinité as a conséquence of the radiation pheno-
mena.

It results from the above expérimental considérations and from theoretical
and numerical investigations (without a free surface in [2], and with a free
surface in [9]), that the conservative fluid-structure System associated with the
real physical System corresponds to the following hypotheses :

— elastic structure,
— incompressible liquid,
— free surface with a Dirichlet boundary condition <p = 0 (q> dénotes the

displacement potential of the fluid).

The last condition will not be considered in the present paper. Expérimental
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investigations bring to the conclusion that — for instance, in the case of a
vertical cylinder immersed in a liquid at a 1 meter depth — the results differ
slightly from the case where the specimen is completely surrounded by the
fluid filling the whole space. We have already said that the case considered
hère corresponds to A > L. By considering the Helmholtz équation in the
fluid, it is easy to see that the behaviour of the liquid in the neighbourhood of
the structure is governed by the Laplace équation Acp — 0 (incompressible
limit). This fact is verified by the expérimental analysis (for the low-frequency
behaviour) as very sharp peaks are observed concerning the structural dis-
placement and the very near pressure field.

/ H z

1
2 -
3

Expérimental

70,5
80,2

120

Computed
(Incompressible

liquid)

71,2
81

121

The following table shows the validity of the incompressible assumption
concerning the " eigenfrequencies " of a cylinder immersed in a liquid [9].

On the other hand, it seems that the radiation effect due to the compressi-
bility of the fluid acts at large distances from the structure Le., on the far-field
pressure, in the low frequency range.

The preceeding features of the expérimental phenomena, in particular the
different behaviour in near- and far-field pressures is explained by the scattering
theory (see for instance [7] or [11]) if a slightly compressible fluid is considered.

The behaviour of the scattering functions (which play in some sensé the
rôle of eigenfunctions in unbounded domains) in the far field area, i.e. the
exponentially large behaviour with respect to the distance r from the structure
([11], sect. 15.7) justify the fact that the damping is prédominant far from the
structure.

In this paper we give a theoretical study of the scattering frequencies of
vibration of an elastic body in a slightly compressible fluid. An asymptotic
expansion of the scattering frequencies, based on the implicite function theorem
is given as well as explicite formulae for the first order term, suitable for further
numerical computation.

Finally we recall that dissipative viscosity effects are not been taken into
account hère. See [2], [14] for some considérations about that question. We
also point out the paper [6] on a related problem.

We thank C. Bardos for valuable discussions and comments.
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314 R. OHAYON, E. SANCHEZ-PALENCIA

II. MATHEMATICAL FORMULATION OF THE PROBLEM

We consider an elastic body occuping the bounded connected domain Qs

of R3. The outer région of R3 (stcfig. 1), Qf is occupied by a compressible
fluid with small compressibility. The interface between Qs and Qf is the smooth
surface E, and we dénote n its unit outer normal In order to introducé some
mathematical simplifications, we assume that the body is clamped at some
inner surface T, but this point is not essential.

We consider throughout the paper a time dependence in e"im where a is
some (in gênerai complex) constant (perhaps the scattering frequency to be
obtained).

Figure 1.

If u(x) dénotes the displacement vector (in fact it is u(x) exp( — lat)), the
équation to be satisfïed in Qs is :

in

du
(2.1)

where ps is the (constant) density of the solid and aijkl are its elastic constants,
which are assumed to satisfy the Standard positivity and symmetry conditions
(see for instance [11], sect. 6.1).

In the fluid région, the displacement vector is assumed to be the gradient
of a potential <p satisfying the Helmholtz équation

- a2 cp - c2 Acp = 0 in Qf (2.2)
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where c is the propagation velocity, which is of the form :

c 2 = — (2.3)

where pf is the density of the fluid and £ is a real small parameter which will
tend to zero (this is the mathematical meaning of the small compressibility
condition). By introducing the new small parameter r| and o> :

ö) = at| (2.4)

équation (2.2) becomes :

(2.5)

(2.6)

(2.7)

(2.8)

The pressure in

The boundary

— G) 2 Cp -

the fluid is giver

P

conditions are :

u

u.n

- A<p

tby :

(Ù2

£ *

= 0

= ll

= 0

—

on

on

in Qf

Acp
£

r
s
CÛ2)

= ~ Pni= - — <P

where (2.7) expresses the clamping at F, (2.8) is the continuity of the normal
component of the displacement on Z and (2.9) is the continuity of the stress
across 2. It is to be noticed that, as the fluid is inviscid, there may be a dis-
continuity of the tangential displacement at E. Moreover, we shall impose an
outgoing radiation condition on <p, Le., q> is a convolution of the outgoing
fundamental solution

_ _ L l _ ; r = | x « < y | . (2.10)

As we shall see later, we shall consider " finite " values of a (Le. not tending
to infmity as 8 or r| tend to zero) and according to (2.4) the corresponding
values of © will tend to zero. This enables us solving (2.5), (2.8) with the radia-
tion condition if u.n is considered as a given function on E. This amounts to
solve the exterior Neumann problem for (2.5), with o in a neighbourhood of
the origin, and this is possible because ee> = 0 is not a scattering frequency
of this problem (see [11], chap. 15, theorem 7.3).

vol. 17» n° 3, 1983



316 R. OHAYON, E. SANCHEZ-PALENCIA

Then, according to the gênerai theory (see [11], sect. 17.2 or remark 2.1
here after), there exists a holomorphic function T(co) defined in a neighbourhood
of (o = 0 with values in the space of the compact operators from L2(E) into
itself such that if <p |s is the trace on X of the solution of (2.5), (2.8) with the
radiation condition, we have :

q>|L= T(G>)(u.n)|z. (2.11)

Remark 2 . 1 : The gênerai proof of the properties of T(oo) is here simplified,
because co = 0 is not an eigenvalue of the interior Dirichlet problem in Qs,
and consequently the solution of the exterior Neumann problem may be
searched as a single layer potential on S (see [11], sect. 15.5 or [12], sect. 23.1
if necessary); the operator giving the density of the single layer as a function of
(u.n) |s is compact in L2(E) (see [11], chap. 15, Lemma 5.1, part Tll) as well
as the operator giving cp on S as a function of the density (see [11], chap. 15,
formula (4.8) and theorem 4.2). •

By using (2.11) we may reduce our problem to another one for the displa-
cement u in Qs, satisfying (2.1), (2.7) and (2.9). Then, (2.9) is a Neumann
condition whose " given " term q> is, via (2.11), an operational function of u.

We define the functional space :

V = { i i eH^Qj ; u | r = 0 }

endowed with the scaïar product

(u,vV= f aijklekl(u) eo.(v) dx (2.12)
Jn,

which defînes a norm which is equivalent to the norm induced by H1(QS).
Then, sol ving (2.1), (2.7), (2.9) with (2.11) amounts finding u e V such that
for any test function v e F,

(u, = ot2 ps f ut vt dx - a2
 P / f [ 7 » (ut Wj)] (dj n,-) dL . (2.13)

Now we may define the scattering frequencies a and the associated scattering
functions u according to the gênerai theory (see [11], chap. 15, if necessary) :

DÉFINITION 2 . 1 : For each real (small) value ofr\ the scattering frequencies
a(v{) of the problem under considération are the (complex, in gênerai) values of
a such that (2.13) has a non-zero solution u (which is the corresponding scattering
function). Of course we have © = r|a.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Remark 2.2 : The scattering function u, as defined hère is an element of F,
and consequently a function defined on Qs. It is clear that it may be uniquely
continued to Qf by grad q>, where q> is defined by (2.5), (2.8) and the radiation
condition. m

In order to write (2.13) as an operator équation we defîne the operators
Bx and 2?2(co) such that

ps ut vt dx = {Bx u, \)v V v e F (2.14)

" Pf [TX©) (M, nj] (pj nj) dL = {B2((Ù) u, y)v Vu, v e V . (2.15)

LEMMA 2.1 : The operators Bu B2(G>) are well defined by (2.14) (2.15).
They are compact operators from V into V and B2 is holomorphic of co in a
neighbourhood ofco = 0 . (More exactly, BJJÙ) is a holomorphic function with
values in £>{V,Vj).

Proof : The compactness of Bx follows from the compact embedding of
H1 into L 2 because B x is in fact continuous from L2 (Q) into V. The compactness
of B2((o) follows from analogous considérations and from the trace theorem :
in fact, by taking in (2.15) v = B2((Ö) U (we omit, as in (2.15) the cumbersome
expression of the trace operator) we have :

II B2((Ù) u \ \ v ^ C ! T(œ) (u, nt) ||L2(2) ( 2 .16 )

then, if we take a séquence uk weakly F-convergent, the corresponding traces
vtx n{ are strongly convergent in L2(L) according to (2.16), B2((o) uk strongly
converges in V and B2(co) is compact. As for the holomorphy, it follows from
the holomorphy of T(œ) (see [11]), chap. 11, proposition 4.3 if necessary). •

As a conséquence, (2.13) may be writen :

u = a2(B1 + B2(co)) u ; co = ar| (2.17)

and we obtain a new equivalent définition of the scattering frequencies.

DÉFINITION 2 . 2 : For each real (small) value of r\ the scattering frequencies
a(rt) are the values of a such that 1 is an eigenvalue of the compact operator
a2{Bx + B2(r\a)).

vol. 17, n° 3, 1983



318 R. OHAYON, E. SANCHEZ-PALENCIA

ffl. CONTINUITY AND LIMIT VALUE OF THE SCATTERING FREQUENCIES

Before going on the study of the scattering frequencies, let us consider the
(formai) limit case r| =0. According to définition 2.2, the scattering frequencies
are the values a such that a~2 are eigenvalues of the operator Bx + B2(0).
The corresponding problem is that of the vibration of an elastic body
surrounded by an incompressible fluid ; it was studied in [2], section 2. The
operator B± + B2(0) is symmetrie (and of course compact) in V and zero
is not an eigenvalue of it. This leads us the theorem 3.1 here after. Nevertheless,
for the sake of completeness, let us prove that B2(0) is symmetrie (as for B1

this is evident). Let us consider (2.15) with G) = 0. If the éléments u and v of V
are given, we also consider the corresponding potentials <p and \|/ which solve
(2.5), (2.8) in Qf. Note that (2.5) is now the Laplace équation ; according to
the Standard theory of harmonie functions at infinity (see [12], sect. 204 if
necessary), <p and \|/ vanish at infinity as | x \~l and grad <p, grad \|/ as | x |~2.
We have :

where the (not writen) « surface intégral of infinity » vanishes because cp grad <p
behaves as | x | " 3 and the surface of the sphère is of order | x \2. The symmetry
of B2{0) foliows from (3.1). Moreover, the fact that 0 is not an eigenvalue of
Bx + B2(0) immediatly follows from (2.14) and (3.1) by taking u = v the
corresponding eigenvector ; we see that u = 0. We consequently have :

THEOREM 3 . 1 : The operator Bx + B2(0) is compact, symmetrie and positive
definite on V. Consequently, it possesses eigenvalues which will be denoted by :

a,2
(3.2)

and the corresponding eigenvectors vx v2,..., may be taken in such a way that they
farm an orthonormal basis in V. Correspondingly,for e = t| = 0, the scattering
frequencies are the real values ± ap with the associated scattering functions v,..

Now, we come back to the scattering frequencies for r| ^ 0 (see défini-
tion 2.2). If we consider the operator a2(Bl + B2(r\a% it is obviously holo-

R.A-I.R.O. Analyse numérique/Numerical Analysis
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morphic in a for fixed rj, and jointly continuous in a and r| with values in
5£ (V, V). Moreover, for a = 0 the operator

[ 7 - a 2 ^ ^^(Tia)]-1 (3.3)

is the identity and consequently linear bounded from Kto F. Consequently
the hypotheses of the classical theorem on continuous dependence on r| of
the singularities of an operator of the form (3.3) (see [13] or [11], chap. 15,
theorem 7.2) applies if we take as D any bounded domain of the a-plane
containing the origin. This gives :

THEOREM 3.2 : The scattering frequenties a(rj) depend continuously on r\
and converge as r\ -> 0 the values ± oij of theorem 3.1.

Remark 3.1 : In the preceding theorem, continuity is understood in the
sense that the scattering frequencies for each value r|* are exactly the accumu-
lation points of the scattering frequencies corresponding to the values ri -> r\*.
But a scattering frequency may split in several ones. On the other hand, no
information is given about the corresponding scattering fonctions. More
information is obtained later by using the holomorphic properties.

IV. HOLOMORPHY PROPERTIES OF SCATTERING FREQUENCIES AND FUNCTIONS

In this section we use the fact that the operator B1 + B2(<o) is holomorphic
as a function of co in order to obtain sharper results.

We consider for small r|, the scattering frequencies oc(r|) which converge to
a given scattering frequency of the unperturbed problem (i.e., one of the values
oty of the theorem 3.1) which we shall dénote oc(0) ; we change a little the nota-
tion ; the index; is no more written, and{0) expresses « unperturbed value ».

Let us first consider the case where (a<0))~2 is a simple eigenvalue of
Bx + B2(0). According to Standard analytic perturbation theory (Kato [3])
the corresponding eigenvalue Ji(co) is a holomorphic function of o> for small co,
and from définition 2.2 we obtain the implicite équation,

_L_ M T i a ) = 0 (4.1)

to obtain a as a function of r|. The implicit function theorem then gives the
existence and local uniqueness of the holomorphic function a(n) for small r|.
Indeed, the derivative of the function in (4.1) with respect to a is :

~ 2 (4.2)

is not
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320 R. OHAYON, E. SANCHEZ-PALENCIA

Moreover, the corresponding (simple) eigenvalue is a holomorphic function
of r| with values in V (with an appropriate normalization).

Remark 4.1 : As B^) is defined for complex oo in a eighbôurhood of co = 0,
the parameter r\ may be taken to be complex (with small modulus) and a is
then a holomorphic function of r| in a neighbourhood of the origin. •

We now consider the gênerai case where (ot(0))~2 is an eigenvalue oïB1 + B2 (0)
with multiplicity m. According to the gênerai theory (which is recalled here
after) the unperturbed eigenvalue splits for co ^ 0 into several eigenvalues with
total multiplicity m ; each eigenvalue is a holomorphic function of a fractional
power of co, and the preceeding équation (4.1) must be modified in a suitable
way.

It is known ([3], chap. VII, sect. 1.3) that the splitting problem is analogous
to that in a m-dimensional space, and consequently it amounts to the splitting
of the roots of an m-order polynomial (the determinant of the eigenvalue pro-
blem for a m-dimensional matrix). (See in this connection [3], chap. II, sect. 1.1,
1.2; additional explanations may be find in [1], chap. IX and [4], vol. II, chap. 5).
Then, in a neighbourhood of œ = 0, the m eigenvalues are decomposed into
groups of pj eigenvalues with Zpj = m ; each group is a p-cycle (the index j
of the cycle is no more written) associated with an irreducible polynomial
(with a suitable définition of « irreducibility ») and is formed by p simple
eigenvalues in a neighbourhood of the origin OD = 0 (the neighbourhood is
« punctured » i.e. the point o) = 0 is removed) ; these simple eigenvalues are
holomorphic functions of co in this punctered neighbourhood, and they cycli-
cally commute when a simple positive curve is described around co = 0, this
is to say, when co turns once around co = 0, the eigenvalue X( becomes Xi+1

for i = 1, 2, ..., p — 1 and Xp becomes Xt. Consequently, they are uniform
holomorphic functions of the variable co1/p in the punctured neighbourhood
of the origin and they have Laurent expansions in the vicinity of the origin.
Because they are bounded (they converge to the unperturbed eigenvalue)
they are in fact holomorphic functions of co1/p. Moreover, it is easy to see from
the preceeding considérations that they are in fact the same holomorphic
function of co1/p for the p distinct déterminations of the p-root. To complete
this description, we point out that several p-cycles may in fact coincide, and
consequently that the corresponding roots are multiple.

In the problem under considération, there are some particular features as
a conséquence of the fact that the unperturbed operator is symmetrie, and
consequently the unperturbed eigenvalue is semisimple (see [3] chapter II,
sect. 2.3). In this case, each p-cycle has a Taylor expansion where the coeffi-
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dents of the powers 1, 2,..., p — 1 of co1/p are zero, that is to say the eigen-
vectors of the cycle have the form

= Xi0) + (ol{l) + û)cp(œ1/p) (4.3)

with cp holomorphic of the variable GO1/P in the vicinity of the origin. The p
eigenvectors are associated with the p déterminations of the p-root.

Then in order to find the scattering frequencies a(r|) we must study the
implicit équation (4.1) with (4.3). It is suitable to introducé the new variables

p = a
llp; S = T[lip => (ùljp = 8(3 (4.4)

where S is taken real and positive then, (4.1), (4.3) becomes :

* _ (̂0) _ 5P pp ̂ (D _ y pp ̂ (gp) = o (4.5)

whiehr is an implicit équation to obtain jîfS), to be-studied m the vicinity ̂ >f
the points

5 = 0, P = m11" =

which are p distinct points for the p déterminations of the p-root. It is seen as in
(4.2) that the derivative with respect to P of the function in (4.5) is not zero at
the points (4.6) and consequently P, and then a = Pp is a holomorphic func-
tion of ô = j]1/p in a neighbouhood of the origin (hère as in remark 4.1,
8 = r|1/p may be taken complex). Consequently, in a neighbourhood of r| = 0
the scattering frequencies may be written in the form

a(Ti) = TOl1") (4,7)

and of course the scattering functions are the corresponding eigenvectors.
If there are two or more identical cycles, the corresponding eigenvalues are
multiple and the same is true for the corresponding cycles (4.7). Moreover,
from an elementary study of the implicit function it follows that a(r|) - a<0)

is of order r\ and the differential takes the same value for ail eigenvectors of
the p-cycle (see explicit computations in sect. 5) ; consequently, the scattering
frequencies have a form analogous to (4.3) :

a(n) = a
(0) + îia(1)

We sum up these results in the

vol. 17, n° 3, 1983



322 R. OHAYON, E. SANCHEZ-PALENCIA

THEOREM 4.1 : In the vicinity ofr\ = 0, each unperturbed scattering frequency
a(0) associated with an eigenvalue of (3.2) with multiplicity m splits into p-cycles
oftheform (4.8), each one is a holomorphic function ofr[i/p in a neighbourhood
of the origin and each p-cycle is associated with the corresponding p-cycle of the
splitting (4.3) of the corresponding eigenvalue as a function of œ. As a consé-
quence the multiplicity are the same as in the splitting (4.3). The scattering
functions are of course the corresponding eigenvalues.

Remark 4.2 : In the case where the values X(1) in (4.3) are different for the m
eigenvalues, the p-cycles are distinct 1-cycles, that is to say, the m eigenvalues
(and consequently the m scattering frequencies) are m distinct holomorphic
functions taking the same value for 8 = 0 . This case is studied in detail in
section 5.

V. EXPLICIT COMPILATION

In order to obtain the fïrst term a(1) of the expansion of the scattering fre-
quency it suffices to differenciate (4.1) with (4.3) at rj = 0 ; this gives :

(5.1)

and the problem reduces to the computation of \{1\ In order to perform
explicit calculations, we admit that :

HYPOTHESIS : The eigenvalues are holomorphic in co, Le., in the framework
of (4.3) and remark 4.2, À,(1) takes m distinct values.

We shall see that this hypothesis amounts to the fact that the eigenvalues of
a certain matrix are distinct. If B2(co) has an expansion

B2((Ù) = B2(0) + (oB2(0) + •» (5.2)

we expand the eigenvalue problem under the form

[Bx + B2(©)] u(œ) = MCÛ)U((Û) (5.3)

u(œ) - u)0) + cou]O) + - (5.4)

where j = 1, 2, ,.., m is the index for each eigenvalue splitting from the

R.A.I.R.O. Analyse numérique/Numerical Analysis
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unperturbed eigenvalue ^(0) (with multiplicity m). The expansion of (5.2)
gives at the two first orders :

{B1 + B2(0)- ?i(0))uf - 0 (5.6)

(B, + B2(0) - X<°>) u f = - (B£(0) - ^>) uj . (5.7)

Relation (5.6) only expresses that uf] (j = 1,..., m) are eigenvectors of the
unperturbed problem. Let us décompose the space V under the form

V = V0®Vé (5.8)

where Vo is the m-dimensional eigenspace associated with ^(0) and V$ is its
orthogonal complement. If we consider (5.7) as an équation for the unknowns
u^ (j = 1,..., m), the Fredholm alternative shows that the compatibility
condition for the existence of a solution is

Q- = ((Bm - M°H> *)v = « ^ e Vo (5.9)

and by choosing a basis in Ko, (5.9) is an eigenvalue problem for a m x m
matrix in Fo. We shall admit that this problem has m distinct eigenvalues.
They are the ^0 ) we were looking for. The study of this problem gives us
u*-0) and the following terms ua) may be computed from (5.7) by standard
calculations.

Next, the operator 5^(0) may be defined from (2.15) by differenciating with
respect to to, if T'(0) is known.

In order to study this operator we solve the exterior Neumann problem
for small co by a single-layer potential with density v (see remark 2.1)

<p(x, co) = f v(y9 ©) vt/ + (r, ©) dZy (5.10)
h

= f

and the intégral équation for y is (see [11], chap. 15, (4.10), (4.11) and (5.5) if
necessary) :

V(JC) = 2 j vOO^-dZ , + 2 /^S((o)v + 2 / (5.12)

ô\|/+ 1 d /etor'
r ( c o s ( r , nx) (5.13)
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where the operator S(co) defined in (5.12) is holomorphic in oo in a
neighbourhood of the origin with values in ifcomp(L

2(L)), compact. It is easily
seen from the series expansion of ei(ûr (see [5]) that the operator S(co) writes for
small CD :

5(CÙ) - 5 ( 0 ) + <Û2S<2) + 0(a)3) (5.14)

where

JT.y

and the solution of (5.12) is given by :

v(œ) = [/ - S(0) ± ca2 S{2) + O(o)3))]-1 2 ƒ

and by using the Neumann series we see that the expansion of v is of the form :

v(co) = v(0) + co2 v(2) + 0(Ü>3) . (5.16)

By expansion of (5.10) in powers of ca we see that the value of cp on E (which
is of course the direct value of (5.10)) is given by

cp(co)

and it follows that

|2 = ~~- f (v(0) + 0(co2)) (^ + KO + 0(co2)} dXy

=4̂
2n k

and consequently :

where ƒ is the given value of the normal derivative

| £ = u.n (5.18)

and v(0) is the density of the simple layer solving the exterior Neumann problem
for co = 0 and the given values (5.18).

On this basis, the behaviour of the scattering function at large distance is
easily obtained. From (5.10), we see that the displacement potential q> is
constructed with the elementary solution \|/+(r, co) given by (5.11); for large r
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its amplitude is associated with the real part of the exponent : as a(0) is real we
have :

Re { mr } = Re { rii\{a.m + T)aw + •••)} = - V Kim a(1))

<Te ; R = r\ r (5.19)

where the exponent is positive according to the genera! properties of the
scattering frequencies ([11], sect. 17.7). We see that R is the characteristic
coordinate for the far field. Nevertheless, it is to be noticed that the corres-
ponding behaviour is only used in the inner région of a wave front
([11], sect. 15.8) associated with the initial values of the problem. As the sound
velocity in the fluid is of order r\~ \ the far field région is only attained a time
of order r\ ~1 after the initial moment (see ƒ?#. 2).

Far field
région

0 Û

Figure 2.

wave f ron t
slope ** r\
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