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FINITE ELEMENT METHODS FOR COUPLED
THERMOELASTICITY AND COUPLED
CONSOLIDATION OF CLAY (*)

by Alexander ZENfSEK (1)

Communicated by P G CIARLET

Abstract — Three linear two-dimensional coupled problems are considered dynamuical thermo-
elasticity, quasistatical thermoelasticity and consolidation of clay In the first two cases an equation
parabolic with respect to the temperature T 1s coupled with a system of equations either hyperbohc
or elliptic with respect to the displacement vector u, in the third case an equation elliptic with respect
to the pressure T 15 coupled with a system elliptic with respect to the displacement vector u The pro-
blems are solved approximately using both triangular and curved triangular finite elements in the space
discretization and v-step A-stable difference methods (v = 1 or 2) in the time discretization. The
effect of numerical integration 1s also considered The resulting schemes are unconditionally stable

Résumé — Nous traitons trois problémes linéawres en deux dimensions la thermoélasticité
dynamque, la thermoélasticité quas statique et la consolidation de I'argile Dans les deux premiers
cas une équation parabolique par rapport a la température T est couplée avec un systéme d’équations
hyperboliques ou bien elliptiques par rapport au vecteur u des déplacements Dans le troisieme cas,
une équation elliptique par rapport a la pression T est couplée avec un systéme elliptique par rapport
au vecteur u des déplacements Ces problémes sont approchés en utilisant la méthode des éléments fims
avec les triangles rectilignes ou curvilignes pour la discrétisation spatiale et les méthodes des diffé-
rences finis A-stables av pas(v = 1 ou 2) pour la discrétisation en temps Les schémes qui en résultent
sont inconditionnellement stables

1. FORMULATION OF THE PROBLEM

According to [2] the dynamical two-dimensional problem of coupled linear
thermoelasticity can be formulated in the following way : Let Q be a bounded
domain in the x,, x,-plane with a sufficiently smooth boundary I'. Find a
displacement vector u(x,, x,, ) and a temperature T(x,, x,, ) which satisfy the
following equations and boundary and initial conditions (for a greater sim-

(*) Recerved 1n April 1982, revised in May 1983
() Computing Center of the Technmical Umversity, Obranctt miru 21, 602 00 Brno, Czechoslo-
vakia
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184 A. ZENISEK

plicity we restrict ourselves to the case of Dirichlet boundary conditions) :

T,+Q=c¢ T + cu, in Q x (0, ¥ 1)

o,,+X,=cu (=12 in Qx(0 #)]

T(xy, Xp0 £) | = T(xy, X,), t>0 3

u(xy, X, Olp = ulx,x,) (=12, t>0 4@

c; T(xy, x5, 0) = ¢ To(xy, x,), (x,%,)eQ ®

u(xy, x5, 0) = uo(x, x5), (x,x,)eQ (=12) ©

cq u Xy, X5 0) = € v,0(xy, X5), (X, %)eQ (=1,2) ™
where

6, = D mlem@ — T — T,)§,,] ®

D m =Dy = Dy, )

g,V =@, +v,)2 (10)

Dyjim &y Cim = Mo &, 8, VG, =&, €R amn

where p, = const. > 0. A summation convention over a repeated subscript
is adopted. A comma is employed to denote partial differentiation with respect
to spatial coordinates and a dot denotes the derivative with respect to time z.
Thus equation (1) 1s the coupled heat equation and equations (2) are Cauchy’s
equations of equilibrium. The symbol Q denotes a prescribed sufficiently
smooth rate of internal heat generation per unit volume. the symbols X,, X,
denote prescribed sufficiently smooth components of body forces per unit
volume. The symbols ¢,, ¢,, ¢, are positive constants; ¢, and ¢, depend only
on the material of a considered body, ¢, = ¢, T, where c, is a positive constant
depending only on the material and T, 1s a positive constant which has the
meaning of the temperature for which the material is stress-free. The functions
on the right-hand sides of relations (3)-(7) are prescribed sufficiently smooth
functions.

In relation (8) a is the coefficient of linear thermal expansion, 3, is the
Kronecker delta and D, ,,, are constants depending on the material only. We
shall consider isotropic materials only ; in this case

AD, 4 By = €38, ¢y =const. > 0. (12
Ifweset ¢, = ¢, = 0, replace (6) by
u.,,(xp X500 =0, (x;,%,)eQ (6™

R AIR O Analyse numérique/Numerical Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 185

and define o, by

G, = Dqkm 8km(u) -T 61] (13)

then problem (1)-(4), (6%), (9)-(13) represents the two-dimensional problem of
coupled consolidation of clay in the case of incompressible pore water [1, 3, 9].
The symbol T has now the meaning of pore water pressure, the constant ¢,
depends on the material only and Q = 0. Numerical tests [9] show that the
linear model (1)-(4), (6*), (9)-(11), (13) gives satisfactory results. (Let us note that
a nonlnear elastoplastic model 1s studied 1n [8].)

Now we present a variational formulation of our three problems. Before
doing it let us introduce some notation. By H™(Q)) we denote the Sobolev space
of real functions which together with their generalized derivatives up to order m
inclusive are square integrable over Q. The inner product and the norm are
denoted by (.,.), o and | . ||, o respectively. Hj(Q) is the closure in the
H*'-norm of the set of infinitely differentiable functions having compact support
in Q. H~!(Q) is the space dual to H}(Q) (with dual norm). C"(H*(Q)) is the
space of continuous functions f. [0, #*] - H*(Q) which have continuous
derivatives up to order m on [0, *]. L2(H*(Q)) 1s the space of strongly measu-
rable functions f: (0, £*) - H*Q) such that

f [f(@) |iqdt < .

0

Multiplying equation (1) by w € H(Q) and using Green’s theorem we easily
find

D(T, w) + ¢,(T, Whoq + €0t Woa = (O Woa

VYwe Hj(Q), t (0, r*] (14)
where

D(v, w) = f

Q

v, w, dx, (v,Wog= j vw dx . (15

Q
Multiplying equation (8) or (13) by &, (v), where ve [Hj(Q)]? integrating
over Q, using relations (2), (9), (10) and Green’s theorem we find

a@, v) + ¢,(8,v)gq — 3(T — T, 0, )00 =
=X, Voo WelHiQ)]*, te(0,1*] (16)

voL 18, N0 2, 1984



186 A. ZENISEK

where

a(v, w) = J Dyt Vi j Wi @% 5 (¥, W g = J v; w; dx an
o

Q

and c; = 1, T, = 0in the case of consolidation of clay.
Thus the variational formulation of problem (1)-(11) reads : Find a function 7
and a vector u which have the following properties :

a) T e L2(H'(Q)), T e LA(H '(Q));
b) we LY ([H (Q)), u;; € L(H~'(Q)), ii e L*([H " {Q)}?);

¢) the function T satisfies boundary condition (3) and the vector u satisfies
boundary conditions (4) in the sense of traces ;

d) relations (14), (16) hold ;

e) the function T satisfies initial condition (5) and the vector u satisfies initial
conditions (6), (7).

The remaining two variational formulations can be obtained from a)-e)
by means of the following rules : If ¢, = 0 then we do not demand
i e L*([H ~'(Q)])?) in b) and (7) in €) and replace (6) by (6*) in e). If moreover
¢, = 0thenwedonotdemand T € L*(H ~(Q))ina)and (5)in e).

The uniqueness of the solutions of all three variational problems can be
proved similarly as in [2, pp. 39-40]. As to the existence of the solution see,
e.g, [7, 16] where some sufficient conditions are presented.

From the point of view of applications it should be noted that it is permissible
in most thermal — stress problems to disregard the effects of both coupling
and inertia (see [2, pp. 41-61]). However, in the case of consoiidation of clay
the coupling effect is not negligible.

2. FINITE ELEMENT SOLUTION

If the domain Q has not a polygonal boundary we approximate I" piecewise
by arcs of degree n > 1 and denote such a changed boundary by I',. The curve
I, is the boundary of a domain Q, which is the approximation of Q. (If Q has
a polygonal boundary I' we set (because of a uniform notation) Q, = Q and
I', = I.) Let us assume that I is piecewise of class C"*1.

Let us triangulate the domain Q,. If Q, = Q then the triangulation t,, is quite
arbitrary; if Q, # Q then 7, satisfies the following conditions : Each arc of
degree n is the curved side of one boundary triangle ; each boundary triangle
has only one side lying on I',; the interior triangles have only straight sides.

Let V, and W, denote two finite element subspaces of C%(Q,) with the
following properties :

R.A.LR.O. Analyse numérique/Numerical Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 187

1. To every function v € H**(Q), where & > Q U Q, (h < k), there exists
a function v™ € V,, the interpolate of v, such that

lo—v"l,e <Ch" ' vl,a G=01 (18

where Cis an absolute constant and 2 = max &y (K € 1,), iy being the diameter
of the triangle K. (We assume that the smallest angle of all triangles of all
triangulations 1, is bounded away from zero.) Further, 1t holds

1 2
V,V,eV,, x Vi =>v, —v,eV, o x V,, 19

where the subsets Vg, V3, (¢t = 1, 2) of the space V, are defined in the follo-
wing way :
Vio={veV,:v=00onl,}, (20)
Vie={veV,:v=u"onl,} (=12 21

where ™ is the finite element interpolation of the function u, appearing in (4).
(E.g, if the used finite elements are of the Lagrange type then each curved side
of a curved boundary triangle has n + 1 common points with I". The function
'™ is uniquely determined on the curved side by the function values of %, at these
n + 1 points.)

2. To every function we H?*1(Q}), where p < n, there exists a function
w™ e W,, the interpolate of w, such that

Iw— W g, < CH" X [ wlyya Gi=0,1) 22)
with C an absolute constant. It holds
Wi, W€ Wip=w, —wye Wy, (23)

where the subsets W,, and W, of the space W, are defined in the following
way :

Wwo={weW,:w=0o0nT,}, 24
Wy ={weW,:w=T"onT,} 25

where T"™ is the finite element interpolation of the function T appearing in (3).

As we want to approximate all terms on the right-hand side of (8) (or (13))
with the same accuracy we choose p = n — 1. (In applications we usually
have n = 2, p = 1 — see, e.g, [1, 9].) In the case of a polygonal boundary I'
the construction of the spaces V', and W, is straightforward and we can choose

VvOL 18, N0 2, 1984



188 A ZENISEK

the space W, quite independently on the space V,. In the case of curved elements
the choice of the space V, determines the choice of the space W,

We explain it in detail in the case n» = 3 and show simultaneously that such
constructions are possible. Let us consider finite elements of the Hermite type.
In this case the parametric equations of the curved side of a boundary triangle
are formed by cubic Hermite interpolation polynomials of the functions which
express parametrically the corresponding arc of the exact boundary I. (This
situation is described in [12, 13, 15] where all details concerning the construc-
tion of corresponding finite elements can be found.) The ten parameters uni-
quely determining the function v(x,, x,) on the curved triangle K are

D*v(P),|a| < 1,1 =1,23;0(P) (26)

where P,, P,, P, are the vertices of K and P, is the image of the point Ry(1/3,
1/3) in the transformation

x, = x1€, 825 x, = x5, &) 27

which maps one-to-one the boundary triangle K onto the unit triangle K,
lying in the plane &, &, and having the vertices R, (0, 0), R,(1, 0), R,(0, 1). For
this element the following interpolation theorem holds : If u e H*(K) and

D*u(P) = D*u(P), la| <1, i=1,23; v(Py) = u(Py)
then

ho—ul,e <CH* 7 ull,e ©<j<4).

The same interpolation theorem holds for a polynomial of third degree
v(x,, x,) which is uniquely determined on a triangle K with straight sides by
the parameters (26), P, being now the centre of gravity of K. Combining these
two types of finite elements we obtain the space V, with the interpolation
property (18).

Let I be of class C'. Then it follows from the construction of curved trian-
gular elements that the subspace V,, < V, consists of those functions ve V,
for which

o(P) =v,(P)cosa, +v,(P)sina, =0, Pel,
where a, is the angle made by the x-axis and the tangent to the curve I at the

point P (If I is piecewise of class C tand P acornerof'thenv(P) = v,(P) =
v,(P) = 0.) The subset V} (i = 1, 2) of V, consists of those functions v € V,,

R AIR O. Analyse numérique/Numerical Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 189

for which
v(P) = u(P)), v,(P))cosa; + v,(P)sina; = u(P)

where P; e I', and where #; is the tangent derivative of the function %, on T..
It is clear that implication (19) is satisfied.

Now we want to construct the finite element space W, on the same trian-
gulation 7, in the case p = 2. To this end, on the interior triangles which have
no common point with the boundary we choose quadratic polynomials
uniquely determined by function values prescribed at the vertices and at the
mid-points of the sides. On the boundary triangles, which have a cubic curved
side, we choose functions which are uniquely determined by parameters

D*w(Py)),|a| <1, WPy, w(P;y), w(Q,;) (28)

where P, P,, P, is a local notation of the vertices of a boundary triangle K
chosen in such a way that P, P, lieonT"; Q,; is the mid-point of the segment
P, P, If K,, K, are two boundary triangles with a common vertex and the
local notation of the vertices of K; has been chosen then we must choose the
local notation of the vertices of K, in such a way that the common vertex
of K, and K, is denoted by the same symbol in both local notations. (This
implies a restriction on triangulations t, : the number of boundary triangles
must be even.) ‘

The function w(x,, x,) uniquely determined on K by parameters (28) is
defined in the following way : The function

W&y, £;) = w(xT(€,, &), x3(Es E5)) s (29

where xT(€,, &,), x3(E,, €,) are the same functions as in (27), is a quadratic
polynomial uniquely determined by the parameters

D w*(Ry), lal <1, wXR,), wH(Rj), w¥(S,3) (30)

where S,; = (1/2, 1/2). Parameters (30) are linear combinations of parameters
(28) and can be computed by means of (29) and the rule of differentiation of a
composite function.

It remains to define finite elements on the interior triangles with one vertex
lying on I'. If this vertex is the vertex P, of a boundary triangle then we choose
a quadratic polynomial uniquely determined by parameters (28), where P, P,,
P, denote now vertices of the interior triangle and P, lies on I'. If the vertex
lying on I is the vertex P, of a boundary triangle then we choose a quadratic
polynomial uniquely determined by function values prescribed at the vertices
and the mid-points of the sides of the interior triangle.

voL. 18, N0 2, 1984



190 A. ZENISEK

Combining triangular finite elements just described we can construct the
finite dimensional space W,. It is easy to see that W, has the interpolation
property (22). The construction of the subsets W, ,, W, with property (23) is
similar as in the case of the space V,.

The constructions of the spaces V,, W, in the case of finite elements of the
Lagrange type are simpler than in the preceding case. Thus we do not introduce
them.

In order to define the approximate solution of the variational problem a)-¢)
let us introduce the bilinear forms

ﬁh(v, w) = J v,wdx, (v, W)o.0, = j vwdx, (31
Q;. Qh
a,(v, w) = J Dyjim Vi j Wi m dx, (v, Wo.a, = f v; w, dx . (32
Qn Qp

In the case of polygonal boundary G,(v, w) = a(v, w), etc.

In order to get numerical results in the case of a curved boundary I' we appro-
ximate the integrals appearing in (31), (32) by quadrature formulas with
integration points lying in Q in the same way as in [5] or [10, 15]. Doing it we
obtain forms D, (v, w), (v, w),, a,(v, W) and (v, w),.

Let us choose an integer M and set

At=rM, t,=mAt (Im=0,1,..,M). (33)

If f = f(x,, x,, ) then the symbol /™ will denote a function in two variables
X,, X, defined by the relation

M= Y(xy, %) = f(xy, x5, m AL . (34

Finally, we denote
Af™ = — A = AT — A (35)

Now we can define the discrete problem for approximate solving our varia-
tional problem a)-e) :

Let v =1 or 2 in the case ¢, = 0 and v = 2 in the case ¢, > 0. For each
m=0,1,.., M — viindavectoru*ve V) x V2 anda function Tf*Ve W,
such that

v v k%
Ach<ZO B, T, w> + c1<__0 a; Tht, w);. +

J= J
v v *
+ c2< Y, oy U, w> = Az( Y. B, Q™" w> Ywe W,,, (36)
j=0 h j=0 h

R.AILR.O. Analyse numériqué/Numerical Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 191

AP ah< Z Bj uhm+j9 V) — ¢ At2<z Bj Thm+j - Tr’ Ui,i) +
j=0 Jj=0 h

+ c (AP, V), = At2<

J

B; X", v) vwelV,o> (37D
=0 h

with initial conditions (38), (39) in the case ¢, > 0, ¢, > 0:
wW=ueVy x V2, T)=T¥ecW,, (38)

hu >

u =2z%eVy x Vi, Th=Y®"eW,,, 39

where the meaning of the symbols on the right-hand sides of (38), (39) is defined
in Remark 3. The coefficients «;, B; are defined in Remark 2. In the case of
consolidation of clay initial conditions reduce to

uy, =0. (40)

This restricts a choice of finite difference formulas.

Remark 1 : In (36) the symbols (v, w)F and (v, w), ** denote two approxima-
tions of (v, w), o, Which are, in general, different from (v, w), — see Theorem 1.

Remark 2 : For v = 1 we have
ap=—1, a,=1; Bo=0, B,=1-06 ®<12) @D
andforv = 2

to=—1+86, a,=1-20, a,=0, B,=1/2-1/20+3,
B,=12-28, B,=1/20+8 (©>1/2) (42

where 8 > 0 if ¢, = 0 and 8 > 0 if ¢, > 0. In the case ¢, = 0 relations (41)
and (42) define the coefficients of v-step A-stable methods (see {10, 14]). In the
case ¢, > 0 relations (35,) and (42) define the coefficients of the general New-
mark method. In this case the f’s are written usually in the form :

Bo=12+B,—0, B,=12—-2p,+6, B,>120. (3

Ifwe set @ = 1/2 we obtain the special form of the Newmark method used, e.g,
in [4] and [6].

In the case of consolidation of clay we shall use only two schemes : forv = 1
the Euler backward method (the special case of (41) with 6 = 0)

do=—1, o, =1, B,=0, B, =1 “4)

voL. 18, ne 2, 1984



192 A. ZENISEK

and for v = 2 the special case of (42) with© = 3/2,6 = 1/4:
ag =1/2, o, = —2,0,=3/2, Bo=B,=0 B, =1. (45)

If we use the two-step method (45) we must compute u} by means of the one-
step method (44). Let us note that in the case v = 2 we could use all schemes (42)
satisfying B, = 0.

Remark 3. The symbol u’" denotes a vector whose components approxi-
mates the right-hand sides u;, of (6). The function T is an approximation of
the right-hand side of (5). If T, = T on I then we usually define T3 = T
where T§" is the interpolate of T, in W,. In the case ¢, > 0 the function
Y(x,, x,) is defined by

Y(x,, x,) = T(xy, x5, 0) + Ati"(xl, x5, 0) (46)

where .T(x,, X,,0) can be computed from equation (1) by means of initial
conditions (5), (7). Similarly we define

2(xy, X,) = u(x,, x,, 0) + Aﬁl(xp X5, 0) 47
or
z(xy, X;5) = u(xy, x5, 0) + Aru(x,, x,, 0) + 1/2 A2 i(x,, x,, 0).  (48)

(Definitions (47) and (48) correspond to the cases g = 1 and g = 2 from
Theorem 1, respectively.) The first two members on the right-hand sides of (47),
(48) are given by initial conditions (6), (7). The third member in (48) can be
computed from relations (2), (8), (10), (12) by means of initial conditions (5), (6).
We define ui®" and z**" to be the discrete Ritz approximations of u, and z,
respectively. (In detail see Section 3.) This definition is a modification of the
definition of starting values from [6]. T3 and Y*"" can be defined similarly.

If we do not use the numerical integration then we define u3’* and z*** to be
the Ritz approximations of u, and z, respectively.

Remark 4 : In [4] the approximation of coupled linear thermoelasticity by
the finite element method is also studied. However, the authors restrict them-
selves to the case p = n = 1; they do not analyze the effect of numerical
integration and consider the Newmark method only with 8 = 1/2.

3. ERROR ESTIMATES

In this section we prove the existence and uniqueness of the approximate
solution and establish the maximum rate of convergence. We shall start with
some definitions and lemmas.

R.A.LR.O. Analyse numérique/Numerical Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 193

The symbols T and & will denote the Calderon extensions of the exact
solution T and u, respectively. The function n € W, satisfying

DT —m,w) =0 YweW,, (49)

is called the Ritz approximation of the function T. The function n, e W,;
satisfying

D(ngsw) = — (T,w w), VYwe W,, (50)

is called the discrete Ritz approximation of the function T. The vector
re Vi, x V3 satisfying

G —r,v) =0 VelV,]? 51

is called the Ritz approximation of the vector ii. The vector r,e V,, x Vi,
satisfying

a)(r, V) = — (Dijkm U mjp V)p VVE [Vh0]2 (52
is called the discrete Ritz approximation of the vector .

LEMMA 1 : Let the boundary T of the domain Q be piecewise of class CP*1,
Let T(x, t)e H?*3(Q), t € [0, t*]. Then

1T =l <CRP ' IIT 150 G=01), (53)

C being a constant independent on T, h and t. In addition, let quadrature formulas
on the unit triangle K, for calculation of the forms D, (v, w) and (v, w), appearing
in (50) be of degree of precision d = max (1,2 p — 2). Then

T =gl < CRM I T30 (G=01). (54)

LemMMa 2 : Let the boundary T of the domain Q be piecewise of class C"*'. Let
u(x, 1) e [H**'(Q)]% 1€ [0, t*]. Then

[ —rllq, <Ch"[ul,,iq (55)

C being a constant independent onw, h and t. In addition, letu(x, t) e [H"**(Q)]?,
t € [0, t¥] and let quadrature formulas on the unit triangle K, for calculation of
the forms a,(v, w) and (v, w), appearing in(52) be of degree of precision d=2 n—2.
Then

T -1l <CH Ul zq. (56)

voL. 18, N0 2, 1984



194 A. ZENISEK

Lemma 1 is proved in [10, 11] in the case W, = W,,. The generalization
to the case W # W, is not difficult. Lemma 2 is an immediate consequence
of the interpolation theorem (18), inequalities (67) and standard devices used
in the analysis of the effect of numerical integration [5, 10, 11].

THEOREM 1 : Let ¢, > 0, ¢, > 0, p=n — 1 and the boundary T of the
domain Q be piecewise of class C"*!. Let

Te Cq+1(Hn+2(Q)) (57)
u e CUH™ Q) (i = 1,2) (58)

Let quadrature formulas on the unit triangle K for calculation of the forms
D, (v, w) and a,(v, w) be of degree of precision2 p — 2 and 2 n — 2, respectively,
let quadrature formulas on K, for calculation of the forms (v, w), and (v, w), be of
degree of precision2 p = 2 n — 2, let the quadrature formula on K, for calcula-
tion of the form (v, w)jf be of degree of precision 2 p — 1 and let the quadrature
Jormula on K, for calculation of the form (v, w)}* be of degree of precision2 p — 1
and such that the first inequality (68) holds. Let all weights of quadrature formulas
used for calculation of the form (v, w), be positive. Then for sufficiently small h
problem (36)-(39) has one and only one solution w}}, Ty (m = 2, ..., M) and in the
cased > 0 (see(42)) the following estimate holds :

MT“—TWMm+HW—uWum<C{mw+M+

M»—A

+
j

(1 & lloq, + 1 & l1,0,) + A7 || Ae® Ill,gh} (59)

0

where g = 2 for @ = 1/2 and q = 1 for 0 > 1/2 and where the constant C does
not depend on At and h. The symbols €™ and e™ are defined by the relations

e =17 —u, "=ny—Tp. (60)

In addition, let us denote
fr = (Y2, (6D

Then in the case d = 0, 8 = 1/2 the expression
IT™ — Ty o, + I 8™ 712 —wr= 22 o, (62)
where m = 2, ..., M, is bounded by the right-hand side of (59).

R.A.LR.O. Analyse numérique/Numerical Analysis
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Remark 5 : The following quadrature formulas of degree of precision 2 p—1
guarantee the validity of the first inequality (68) : for p = 1 the formula

[ o7 & = G02R) + 02k + 0% (R)
Ko

and for p = 2 the formula (4.1.18) from [5].

Remark 6 : The norms appearing on the left-hand side of (59) are natural
norms in thermoelasticity : 1) in applications we need to know the values of T,
y;and u,; ;; 2) T and u, ; should be computed with the same accuracy.

ij>

THEOREM 2 : Letc; = ¢, = 0,p = n — 1 and the boundary T of the domain Q
be piecewise of class C"*1. Let

TeCYH"XQ)), ueC  (H"2Q) (=1,2). 63)

Let Q = 0 and let the assumptions concerning the forms D,(v, w), a,(v, W),
(v, W)y (v, W), be the same as in T heorem 1. T hen for sufficiently small h problem
(36), (37), (40) has one and only one solution W}, Th(m = 1, ..., M) and the
Sollowing estimate holds -

“ T _ Th uh + u ar — ll;," Nl,ﬂ;. < C{At(v+l)/2 + "+ “ ll0 u"+2’n hr At—l/z}
(64

where the constant C does not depend on At and h and the norm ||. ||, is defined by

M
I fIIZ = At Zl 1™ 13, (65)

If v = 1 then we use Euler's backward formula (44) ; if v = 2 then we use two-
step backward formula (45) for m = 2, ..., M and one step formula (44) in the
first step.

Proof of theorems 1 and 2 : The assumptions of Theorems 1 and 2 and
Friedrichs’ and Korn’s inequalities imply for sufficiently small A

Ciliwlia, <DwWwW) < Cyliwlig, YweW,, (66)
Cilviig, <atv) <Cllviig, WelV,] (67)
Colwlia, <wwi* <Cllwlig, YweW, (68)

0<(vv), <Clviig WelV,]? (69)
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