@article{M2AN_1985__19_4_519_0, author = {Bramble, James H. and Falk, Richard S.}, title = {A {mixed-Lagrange} multiplier finite element method for the polyharmonic equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {519--557}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {19}, number = {4}, year = {1985}, mrnumber = {826223}, zbl = {0591.65073}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1985__19_4_519_0/} }
TY - JOUR AU - Bramble, James H. AU - Falk, Richard S. TI - A mixed-Lagrange multiplier finite element method for the polyharmonic equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1985 SP - 519 EP - 557 VL - 19 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1985__19_4_519_0/ LA - en ID - M2AN_1985__19_4_519_0 ER -
%0 Journal Article %A Bramble, James H. %A Falk, Richard S. %T A mixed-Lagrange multiplier finite element method for the polyharmonic equation %J ESAIM: Modélisation mathématique et analyse numérique %D 1985 %P 519-557 %V 19 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1985__19_4_519_0/ %G en %F M2AN_1985__19_4_519_0
Bramble, James H.; Falk, Richard S. A mixed-Lagrange multiplier finite element method for the polyharmonic equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 4, pp. 519-557. http://archive.numdam.org/item/M2AN_1985__19_4_519_0/
[1] Solution of linear Systems of équations : itérative methods. Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer Verlag, 1977. | MR | Zbl
,[2] The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), pp. 179-192. | MR | Zbl
,[3] Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. | MR | Zbl
and ,[4] The Lagrange multiplier method for Dirichlet's Problem, Math.Comp., 37 (1981), pp. 1-11 | MR | Zbl
,[5] TWO mixed finite element methods for the simply supported plate problem, R.A.I.R.O., Analyse numérique, 17 (1983), pp. 337-384. | Numdam | MR | Zbl
and ,[6] Rate of convergence estimates for non-selfadjoint eigenvalue approximations. Math. Comp.. 27 (1973). pp. 525-549 | MR | Zbl
and ,[7] A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem, EEE Transactions on Magnetics, Vol Mag-18, (1982), pp. 357-361.
and ,[8] Simultaneous approximation in scales of Banach spaces, Math. Comp., 32 (1978), pp.947-954. | MR | Zbl
and ,[9] A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. | MR | Zbl
and ,[10] Dual itérative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp.277-295. | MR | Zbl
and ,[11] Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp.556-567. | MR | Zbl
,[12] Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. | MR | Zbl
and ,[13] Problèmes Aux Limites non Homogènes et Applications, Vol 1, Dunod, Paris, 1968. | MR | Zbl
and ,[14] On estimates andregularity II, Math. Scand., 13 (1963), pp. 47- | MR | Zbl
,