
M2AN. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
- MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

M. I. COMODI
Approximation of a fourth order variational
inequality
M2AN. Mathematical modelling and numerical analysis - Modéli-
sation mathématique et analyse numérique, tome 20, no 1 (1986),
p. 5-24
<http://www.numdam.org/item?id=M2AN_1986__20_1_5_0>

© AFCET, 1986, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and nume-
rical analysis - Modélisation mathématique et analyse numérique » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1986__20_1_5_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


IWTHEJWTK^MOOEUJNGAWHUMEföCALAKALYSJS
MOOéUSATKWNWTTIÉMADOUeETA^YSfWMÉRKJUe

(Vol. 20, n« 1» 1986, p. 5 à 24)

APPROXIMATION OF A FOÜRTH ORDER
VARIATIONAL INEQUALITY (*)

by M. I. COMODI C1)

Commimieated by F. BREZZI

Abstract — We study a variational inequaüty related io a hending plate problem with a boundary
unilatéral constraint. We approximate the problem by a non-conforming finite element method% and we
prme the convergente &f ûmê

Résumé. — Nous étudions une inégalité variationnelle relative au problème de la flexion d'une
plaque avec une condition aux limites unilatérale. Nous approximons le problème par une méthode
d''élément fini non conforme et prouvons la convergence du schéma discret

1. INTRODUCTION

The aim of this paper is the study of a fourth order unilatéral problem intro-
duced by Duvaut and Lions (« Unilatéral Phenomena in the Theory of Flat
Plates » ; chap. IV ; [6]). Precisely : let us consider an elastic plate f 14] occupy-
ing in its référence configuration a convex open bounded subset Q of M2 with
boundary ÔQ, subject to the action of a vertical force ƒ The unknown of the
problem is the displacement u of ail points of the plate : we want to minimize
the total potential energy of the plate under some constraints on the boundary
values of u. In a previous paper [5] we considered the case u > 0 on dQ ; now,
we seek for u subject to another type of unilatéral constraint : normal deriva-
tive > 0 on dQ.

Paragraph 2 is devoted to the introduction of the notations used throughout
this paper. In paragraph 3, following [6], we study the problem as a variational
inequality in a closed convex subset of H2(Q) ([3], [9]). We first prove that

(*) Received in October 1984. This work was partially supported by M.P.I., by G.N.I.M, of
C.N.R. and by LA.N. of C.N.R. of Pavia.

C1) Dipartimento di Matematica, Università di Pavia, Pavia, Italy.
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6 M. I. COMODI

the necessary condition (ƒ 1) = 0 (where (.,•) = inner product in L2(Q))
is also suffîcient for the existence of a solution u (that was left as an open ques-
tion in [6]) ; then we examine the problem of the uniqueness of u according to
the vanishing of (ƒ/?), p e P^Q). If (ƒ /?) ^ 0 for at least one p e P^Q), then
we assume simple conditions on O and ƒ so that u becomes unique in the class
of functions with zero average. On the other hand if (ƒ p) = 0 for ail/? G /^(Q)
(as assumed in [6]) then u is unique up to a polynomial/? in P^Q) (as proved
in [6]).

Paragraph 4 is devoted to the approximation of the problem by a fînite ele-
ment method ([4], [13], [15]) of non-conforming type. More precisely, we use
the method due to Morley ([10], [12]), still better, the modification of it intro-
duced in [2]. We prove the existence of at least one approximate solution,
under the only assumption ( f, 1) = 0, and we remark some analogies between
the continuous problem and the discrete one.

In paragraph 5, first of ail we give an optimal error boundfor the error on the
moments uiip i,j = 1, 2, and we show that this estimate also bounds the error
done on the displacement if ( ƒ, /?) = 0 for ail p e P^Q). On the other hand,
if ( f> P) ^ 0 f° r at least one p e P^O), we prove an error bound 0(h \ \nh |1/2)
for the approximate displacement in the piecewise H2'h(Q) norm.

2. NOTATIONS AND GREEN'S FORMULAE

Let Q be an open, bounded, convex subset of iR2 with smooth boundary dQ.
We dénote respectively \>y n = (nl9 n2) and_f = (îv t2) = (— n2, nj the unit
outward normal and the unit tangent to ÔQ

— i>/t-, vjn, vjt indicate respectively the derivatives of v with respect to the
variable xt, the normal and the tangential derivative.

Let Hm(Q) = Wm>2(Q) be the usual Sobolev space ([1], [11]) consisting of
real valued functions defîned on Q which belong to L2(Q) along with their
derivatives of order /, 1 < i < m :

— ( f9 G) dénotes the L2(Q) inner product, i.e. ( ƒ g) = I fg dx.f^ge L2(Q),fgdxj,

x = (xl5 x2)
— I • L,n = 1-1» a n d II • Wmxi = II • L dénote respectively the seminorm

and the norm on Hm(Q).

Throughout this paper we use the convention of repeated indices, we dénote
by Pk(Q) the space of polynomials of degree ^ k and by C, or Ct, / eN ,a generic
positive constant, which may change value at different occurrences. Given a
tensor valued function 0 = (0y), hj = 1, 2, we define :

M2 AN Modélisation mathématique et Analyse numérique
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A FOURTH ORDER VARIATIONAL INEQUALITY 7

Mn(0) = — 9̂ . nt rij = nonnal bending moment

Mm(6) = 0^ nt tj = twisting moment

6n(9) = — %fi Kj — normal shear force
Kn(§) = ô«(§) - Mm(Q)!t = normal Kirchhoff shear force.

Then, given w e H\Q\ 0 = (9y) = w/ip v e H2(Q\ the following Green's
formulae hold (note that (2.1) needs only w G #3(Q))

(2.1) f witj vnj dx - - f wjin vu dx + f MJ§) vjt ds -
Jn Jn Jan

- f MJ®vlnds
Jdn

(2.2) - j w/ijiv,jdx= f w /w»<fe+ f Qj@)vds.
4ftr J ^ Jê^

By combining (2.1) and (2.2) and integrating by parts the term Mnt(9) i?/f ds,
Jan

we obtain

(2.3) | w^v^jdx^ f w / w i ? & - f Mn(§)vlnds+ f KJ®vds.
Jn Jn Jdn Jan

3. THE CONTINUOUS PROBLEM

Let us consider the closed convex subset of H2(Q)

(3.1) K = { Ü G H 2(Q), ü/n ^ OonSQ}.

Now, given the continuous bilinear non-negative form

(3.2) afa v) = f ufij vfU dx u,ve H2(Q)
Jn

and a function ƒ G L2(Q), we want to solve the following unilatéral problem

f Find ue K such that

\ a(w, v — u) ^ (f,v — u) for all u G X .

Since

(3.4) a(vy p) = 0 for ail v e H2(Q), /> G PX(Q) ,

vol. 20, n° 1, 1986



8 M. I. COMODI

by taking, in (3.3), v = u ± c, c e P0(Q\ we easily obtain

(3.5) (f,c) = 0 for ail c G PO(Q) .

The two relations above suggest to seek for a solution of (3.3) belonging
to the following closed convex subset of K

= $veK, f t> dfc = 0 j .(3.6) K

More exactly, we can consider the problem

f Find u G K such that

\ a(u, v — u) ̂  (f,v — u) for ail v e K .

The choice (3.6) implies

(3.8) KnP^Q) = 0

and we shall see, in the following two theorems, that (3.4), (3.5), (3.8) are
sufïicient conditions for the existence of at least one solution of (3.7).

To this purpose let us introducé the quadratic functional

(3.9) J(v) = \ a(v, v)-(f,v) ve H\Q).

As K is convex and (., .) is symmetrie and non-negative, we know that (3.7)
is equivalent to the following minimum problem

{ Find u e K such that

J(u) = min J(v).
v e K

We could get the existence of a solution of (3.7) and (3.10) by using [7], but,
in view of the approximation of the problem, we prefer to give the two following
Theorems. We begin by proving a basic property of the functions of K.

THEOREM 3 . 1 : There exists C, independent of u, such that

(3.11) || v\\2 ̂  C\v\2 for ail veK.

Proof : If (3.11) is false, then, for ail ne N, there exists vn such that

(3.12) vneK

(3.13) | | t > J | 2 >n\vn\2.

M2 AN Modélisation mathématique et Analyse numérique
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A FOURTH ORDER VARIATIONAL INEQUALITY 9

The fonctions

(3-14) '.-j^-f

II Vn II 2

verify, for ail ne N,

(3.15) vneK
(3.16) K H 2 = 1
(3.17) \$n\l<\

hence, owing to (3.16), there exists a subsequence, which we still dénote by vn,
weakly convergent in H2(ÇÏ) as n -> + oo. Let v be its limit. Because of (3.17),
(3.15) and (3.8), we have v = 0. But, as vn -> 0 strongly in H^Q), (3.17)
implies vn -• 0 strongly in H2(Q), and this contradicts (3.16). •

THEOREM 3.2 : Problem (3.10) (/*ence problem (3.7)) to otf /e<m o«e solu-
tion. Moreover, given the set

(3.18) P = {pePl(G),

two solutions ux and u2, then

(3.19) ut -u2=p° p°eP

(3.20)

Proof : By the above theorem and the well known inequality

(3.21) 2 a b ^ - \ a 2 ~ c 2 b 2 f o r a i l a , b , c e M , c ^ O

we obtain that the quadratic, lower semicontinuous functional J(v) vérifies,
for ail ve K,

(3.22) J(v) = \ | v\\ - (ƒ v) > C, || v \\2 - || ƒ ||0 || t; ||2 ^

> ^ I I H I î - c2y ƒ us

with C^ C2 independent of P. This implies that J(v) ~> + oo as || v ||2 -• + oo
and it is bounded from below on the closed convex K. That gives the existence
of at least one solution of (3.10).

vol. 20, n° 1,1986



10 M. I. COMODI

Now, let us consider two solutions ui and w2. By adding the following two
relations

(3.23) a(uv u2 - uj ^ (ƒ u2 - uj

(3.24) a(u2, ux - u2) ^ (ƒ ux - u2)

we obtain \u1 — u2\2 — 0, or (3.19). Inserting it in (3.23) and (3.24), we get
(3.20). •

Whilst we have solved the problem of the existence of a solution by using
only the necessary condition (3.5) (which is also suffïcient, by now), the ques-
tion of the uniqueness of a solution dépends strongly on the behaviour of the
product ( ƒ, p\ psP. Before distinguishing two, quite different, situations, we
remark, by a simple application of Green's formulae, that a solution u vérifies,
at least formally, the following relations

(3.25) A2u = f in Q

(3.26) u/n ^ 0 on dQ

(3.27) Mn(X) < 0 on dQ

(3.28) ujnMnQ) = 0 on dQ

(3.29) Kn(X) = 0 on dQ

where X is the following tensor valued function

(3.30) X - ( X ^ = (ufij) i , j = 1 , 2 .

Now, let us examine the two possible cases that follow.

Case I : The function ƒ vérifies

(3.31a) (ƒ,/>) = 0 for ail peP.

That implies, by Green's formulae and (3.25)<3.30)

f
Jô

(3.31*) f Mn(X)plnds = (f9p) = 0 forall peP.
Jôa

Case II : There exists at least p e P such that

(3.32a) ( ƒ £ ) = f Mn(X)p(ndsï0.
Jôa

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



A FOURTH ORDER VARIATIONAL INEQUALITY H

That means :

(3.326) there exists only one p* s P such that

(ƒ,/>*)= f
Jan

Case I.

If (3.31) hold, following now [6], we introducé the quotient space

(3.33) H=H/P,

where

(3.34) H = | v e H\Çï\ | v dx = 0 j ,

oLK ûhtained by^applying the canonical mapping

(3.35) v-> v of H^ H.

Since

(3.36) a(v, w) — a(v, w) for ail ve v , wew,

the following theorem immediately follows.

THEOREM 3.3 : If (3.31) hold, then there exists a unique solution u of the
following problem

f Find us K such that

\ a(ù, v - M) > ( ƒ v - u) for ail v e K .

Proof : It is an obvious conséquence of Theorem 3.2,(3.31a) and of (3.36). •
Now, let us deal with Case IL

Case IL

THEOREM 3.4 : If dQ does not contain rectilinearportions, then Problems (3.7)
and (3.10) have a unique solution,

Proof : Clearly, we can begin this proof from the results of Theorem 3.2.
Let us suppose p° # 0, p° given by (3.19). As Q is convex and its boundary

does not contain rectilinear parts, only two distinct points sv s2 e dQ exist
such that

(3.38) pfcsj = p%(sj = 0

vol. 20, n° 1, 1986



12 M. I. COMODI

and sl9 s2 divide dQ into two connected portions BQt and dQ2 sueh that

(3.39) 0 > p%(s) = (ux - u2)ln(s) ^ - u2(n(s) for ail s e dQt

(3.40) 0 < pl(s) = (u, - u2)in(s) ^ ulfn(s) for ail s G ÔQ2 .

As

(3.41) Xx = ^ = X

where Xv X2 are the tensor valued fonctions whose components are the second
derivatives of ux and u2 respectively, we obtain, by combining (3.39), (3.40)
and (3.28),

(3.42) Mn(X) = 0 a.e. on 30

which contradicts (3.32a). •
The conditions (3.32) also itnply the following property of the solution u.

LEMMA 3.5 ; The normal derivative of any solution u of (3.7) and(3.10),
vanishes at least on a subset of the boundary, which has positive measure.

Proof : It is obvious3 once more by noting that uln > 0 a,e. on 3O, implies
Mn(X) = 0 a.e. on dQ. m

In the next paragraph we shall assume that Ù is a convex polygon of R2. This
implies, obviously, the présence of rectilinear portions. Then, in Case II we
suppose the following behaviour of ƒ

ASSUMPTION 3 . 6 : Let yb 1 ^ i ^ N, be the rectilinear portions of BQ, and

let P be the following subset of P

(3.47) P - {pB P,pln = 0 on yp for some i, 1 ^ i ^ N } .

We assume

(3.48) (f,p) # 0 for ail peP.

Namely, if yt is represented by

(3.49) ai xt -j- 6. x2 + c. - 0 1 ^ f ^ N

we assume

(3.50) ! f(aix2-bixl)dx^0 for ail i , l ^ i ^ N . m
Jo

M2 AN Modélisation mathématique et Analyse numérique
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A FOURTH ORDER VARIATIONAL INEQUALITY 13

THEOREM 3 . 7 : Assumption 3,6 implies the uniqueness of the solution.

Proof : Notice : p° given by (3.19) belongs to P (otherwise u =(u1
Jt u2)/2

would contradict Lemma 3.5). Then, owing to the preceding Assumption and
(3.20), p° = 0. •

LEMMA 3 . 8 : Lei G be the subset of dû, such that

(3.51) K/B(S) = 0 on G .

Then, at least Gv G2 e G exist, with positive measure andnotparallel

Proof : If the Lemma does not hold, there exists pe P with pjn = 0 on G.
That means

(3.52) = f
JG

and this contradicts (3.48). •
In what follows, in both Cases (3.32) and (3.31), we assume that u (resp. w)

has the following regularity.

ASSUMPTION 3 . 9 : The solution uof(3.7) (hence the functions of ü, solution
• 37)) belongs to H\Çï) n ^2 '°°(Q). •

4. THE APPROXIMATE PROBLEM

In order to give an approximation of (3.7), let us assume that Q. is a convex
polygon of U2. We consider a triangulation Dh of Q with regular triangles T,
whose maximum diameter is < h.

We are using a non-conforming finite element method : Morley's
method ([12], [10]), modifîed according to the technique introduced by [2].

To this purpose let us define
— the space

(4.1) H2* = {vhe L2(Q), vh\Te H\T) for ail TeDh}

with the norm

(4.2) \ \ v h \ \ l h = X U ^ l l i r
TeDh

vol. 20, n° 1,1986



14 M, I. COMODI

and the seminorms

(4.3) |ü* | , 2
f h= I \vh\lr Ï = 1 , 2

— the subspace of H2h

(4.4) Ü2h = <vheH2>h, vhdx = 0

— the finite dimensional subspace of H

(4.5) Vh = { vh e H2>h, vh \T e P2(T) for all T e Dh, v
h is continuous at the

vertices of the triangles, tfn is continuous at the midpoint of
each edge }

— the convex closed subset of Vh

(4.6) Kh = { vh e Vh, v)n ^ 0 at the midpoint of each edge belonging to
ÔQ}

— the continuous bilinear form

(4.7) ah{v\ vf) = Y \ </ < , d* ^ »? G H2h *
n v 1

Now we consider the following problem

Find u*1 G Kh such that
( 4 ' 8 ) ' " * - — ^ - f o r a l l ^ G A f t

where v1 is the piecewise linear interpolate (belonging to C°(Q)) of tA The
modification introduced by [2] lies in the use of (i?1 — u1) mstead of (vh — i/).

We shall be able to prove the existence of a solution of (4.8) by using almost
the same arguments of the above paragraph, that is : the équivalence of (4.8)
to a minimum problem and the équivalence, in Kh, of | . | 2 h to || . ||2 h (theo-
rem 4.1). This allows us to find at least one solution (theorem 4.2).

The minimum problem equivalent to (4.8) is the following

f Find uh e Kh such that
( 4 < 9 ) ! Jh(if) - min Jh(v

h)
l vheKh

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



A FOURTH ORDER VARIATIONAL INEQUALITY 15

where

(4.10) Jh(v
h) = j ah(v\ vh) - ( ƒ v1) vh e H2h.

By remarking that, analogously with (3.8), we have

(4.11) KAnP1(Q) = 0

it is easy to prove the following theorem.

THEOREM 4 . 1 : There exists C, independent of vh, such that

(4.12) | | i>*| |2 ,h<C|tJ|2 ih foraU vheKh.

Proof : By proceeding as in Theorem 3.1, we fmd a séquence vn such that,
for ail ne N,

(4.13) v.eKh

(4-14) KII2 là = l
(4.15) vn -» v , as n -• + oo , in Vh (fînite dimensional)

(4.16) veKh

(4.17) |i?|2tft = 0.

The last equality means that v 6 P^T) for ail T € Dh5 and since veVh this
implies ueP(see (3.18)); then(4,16) and(4.11) imply v = 0, which contra»
dicts(4.14). •

THEOREM 4 .2 : Problems (4.8) and (4,9) have at least one solution. If ift and
«4 a^e two solutions, then

(4.18) 0A- Î4) = p peP

(4.19) (fp) = 0.

Proof : Using the technique of Theorem 3.2 and recalling that (e.g. [4])

(4.20) || v11|0 ̂  C{K m II t;h ||2>h for ail vh e Vh

If v1 is the piecewise îinear interpolate of v\ we can easily check both the exis-
tence of at least one solution of (4.8) and (4.9), and the relations

(4.21) \vi[ - 4i2,* = 0*
(4.22) (fu{ - 4 ) = 0

vol.20, n°l, 1986



16 M. I. COMODI

where u\ and u\ a r e t w o solutions of the problems. Formula (4.21) with the
continuity of u\ and u\jn, i — 1, 2, respectively at the vertices of the triangles and
at the midpoints of the edges, implies (4.18); then (4.18) and (4.22) give (4.19).

Case 1(3.31)

We consider, as we did in the case of the continuous problem, the quotient
space

(4.23) H2h =

the canonical mapping

(4.24) vh->vh of

and the images Vh of Vh and Kh of Kh given by the map (4.24) (of course
Khcz Vh).

THEOREM 4 . 3 : Let Uh be the following closed convex subset of Kh

(4.25) [/h = { î / e ^ y solves(4.7) } .

Given vh e H2h we dénote by h1 the class of fonctions obtained by applying
(4.24) to the continuouspiecewise linear interpolate of vh,

The problem

( Find ùh e Kh such thaï
(4*26) {affiff1- ^^(fiv1- ù1) for all hh e Kh

has a unique solution. Moreover

(4.27) ^cù*.

Proof : By the results of Theorem 4.2 and by (3.31). •
Now, let us notice that the solutions of (3.7) and the solutions of (4.7) have

(in both Cases (3.31) and (3.32)) a very similar behaviour. This will be shown
in Theorem 4.6. Before that, let us introducé some notations and recall a
resuit (for the proof see e.g. [10]) which we shall use also in the next paragraphe
in order to prove the convergence of the discrete scheme.

(4.28) ££ dénotes the set of the internai edges L.

(4.29) S dénotes the set of the boundary edges L.

M2 AN Modélisation mathématique et Analyse numérique
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A FOURTH ORDER VARIATIONAL INEQUALITY 17

LEMMA 4.4 : Let S(t^„), S(u£) be the jumps of vh
jn and xfjt at the interelement

boundaries. Then

(4.30) f S(rf)ds= f S(vt;t)ds = 0 /or a// ifieVk9 Le&. •

Remark 4.5 : In particular we point out that, given the endpoints mly m2

and the midpoint m of an edge L*, then

(4.31) j tfjtds = v\m2) - vXmJ for all vh e Vh, L * e i f u ^
JL*

(4.32) f i^ ds = JI(L*) i^(în) for all uft e Fft, L * e i f u # . •
JL*

4 . 6 : Given i^^U^ WE can uonsrder in bendmg moment
defined at each interelement boundary, with Xh

iJiT = w |̂T* Then

(4.33) MnQf) is continuons at the interelement boundaries

(4.34) [ MnQ?)tfnds = 0 for ail LeÊ
JL

(4.35) Mn(X
h) ^ 0 on ÔQ

(4.36) ah(tt, v
h - «*) = X f M*A*) (^ " A « ds "

L*ei?uf JL*

(4.37) a»(«», «*) = (ƒ, i/) - X f KQt) < ^ for all vh e Kh

(4.38) ( f, p) = £E_ [ Mn(X
h) P/n ds for ail peP.

Proof : Green's formula gives us

(4.39) ah(A vh - «*) = Y ([

- f s ( f, v1 - u1) for all
L* /

vol. 20, n° 1, 1986



18 M. I. COMODÏ

Let us consider some fonctions of Kh with suitable degrees of freedom. More
precisely : let Ai9 1 ^ i ^ N(h\ be the vertices of Dh, and mp 1 ^ j ^ M(h\
the midpoints of the edges oîDh. À fonction ï e Vh, is defmed as follows

(4.40) ~v = i? — (mean value of Ü)

where v has the following do.f.

(4.41) F&) = valueofüatthevertex^, 1 ^ i < N(A)

(4.42) Ffj(v) = value of t>/B at the point mp 1 < j ^ M(h).

Now we choose l)v v2 e Vh with

(4.43) F/fai) = 1 + Fffah) at a point wje fl

(4.44) F^v2) = - 1 -f Fjfif) at the same mj

(4.45) F , /^ ) = F;/p2) = Ftfjf) 1 < y ^ Jf(A), ƒ

(4.46) F ^ ) = Flv2) = Ft<^) 1 ^ î < N(h).

By inserting vv v2 in (4.39) and using Remark 4,5 we obtain, with nx and n2

outward normals to the edge Lj containing mj

(4.47) f (Mni(X")-Mn2(X»))ds = 0

hence(4.33).
Next, 1>1 and T>2 e Kk, with

(4.48) FffiVi) = 0 at a point rnje dQ

(4.49) Ffp^ = 2 Fffit) at the same point

and once more (4.45), (4.46) give (4.34). On the other hand (4.35) is obtained
by taking ~ve Kh with the same values of ail do.f. as M*, exœpt for one mje dQ,
where

(4.50) F/3(t>) = l +F/3(u*).

Formula (4.36) is an obvious application of the above results. Now, in order to
obtain (4.37), let us notice that

(4.51) ah(A vh) = (f, v1) for ail vheVhi u* = 0 on où.

Then, because of (4.36), (4.51) and Green's formula, the décomposition

(4.52) v = \ + 1>2 for ail veKk,
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where

(4.53) F fa) = Ffc) at ail At, 1 < / < N(h)

(4.54) F, fa) = Fu(v) at all m} e Q

(4.55) Fn(v2) = Ffj(v) at all mi e dQ

immediately gives (4.37), from which (4.38) follows. •

Case 11(3.32).
Assumption 3.6, Theorem 4.2 and the above theorem lead to the following

resuit, easy to prove by the same techniques of Lemma 3.5, Theorem 3.7 and
Lemma 3.8,

THEOREM 4.7 : In Case II, Problem (4.7) has a unique solution, whose normal
derivative vanishes on at least two not parallel edges belonging to 3Q. •

5. ERROR ESTIMATES

In this paragraph we shall estimate the convergence of the discrete scheme
in two steps. The first step will be the following : in Theorem 5.2 we shall bound
the error on the moments, which can be done without distinguishing between
Case I (3.31) and Case II (3.32). In Theorem 5.3 we shall see that, if we are
dealing with the problem in Case I, such estimate also measures the error done
on the displacement In the second step we consider Case II, and we bound
|| u — w* ||2 h mainly by considering the boundary conditions. The real cons-
tants C or Ci9 i e N, which appear in this paragraph, are independent of h.

First of all let us give the following resuit in approximation theory.

LEMMA 5 . 1 : Given a function v defined and continuously differentiable on ail
T e Dh, we define as follows its interpolate vM into Vh.

(5.1) vM = vM - (mean value of vM)

where

(5.2) vM = v at all vertices

(5.3) vMjn at the midpoints of each edge = mean value of vjn on the same edge .

Then we have

(5-4) \v-vM\m>h
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Proof : In [8] we can fmd the resuit

(5.5) | t > - ? M | M i f c < C * 3 - " | t > | 3 0 ^ m ^ 3

and (5.5) and (5.1) immediately give (5.4). •
Finally we can bound the error in the seminorm | . \2th.

THEOREM 5 . 2 : Let u be a solution of (3.7) and u* a solution of(4.8). If the
number of points of dQ where the constraint changes from binding to nonbinding
is fïnite, then

(5.6) | M - «* |2tfc = 0(A) .

Proof : Let uM be the mterpolate of u into Vh9 which clearly belongs to Kh,
and let X be given by (3.30).

We define

(5-7) % = uM-uh

(5.8) x1 = piecewise linear interpolate of %

(5.9) Mnt = mean value of MntQC) on an edge of the triangulation

(5.10) Mn = mean value of MnQÇ) on an edge of the triangulation .

We have

(5 .H) |X 11,* - flfcÛC X) = ah(uM - M, x) + flfc(« - wh, X) <

^\uM - u \lth | x |2ffc + ûh(", X) - ( / XO

Green's formula yields

(5.12) Eh - (f x1) = X (- f ^ X/J ̂  + f Mn(
TeDh\ JT JÔT

- \ Mn(X)%lnds)+ X ïK}lx
I
bdx

JôT / TeDhJT

= I f f M X 1 - X)/, ̂  + f Mnt{X) ljt ds
TeDh\JT JÔT
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Owing to Lemma 4.4, we can write, following [2],

£ ([ Mnt(X)%ltds- [ Mn(X)xlnds) =

= I [{MmQÇ)-MJ%ltdS

(5.13) LB*JL , _

/r r — \

Let us write the partial estimate which we obtain by combining Lemma 5.1,
(5.11)-(5.13) and by recalling that Kn(X) vanishes on dQ.

(5^14) 1x4* < Ch \u\t t X kfr ± I e ^ l - t ^ f l û Jl X - XJ Ui**» ~

^ n X/„ * •

Classical results of interpolation [11] give

/ c i c \ il „ «#/ M <T II v v J I I 1 / 2 II v v ^ l l 1 ^ 2

p . i ^ ; 11 X X l l i / 2 , ô n ^ H X "" X l lo .an H X X l l i . a n

and by using Bramble-Hilbert's techniques we obtain
(5.16) || x - X1 llo,an «
(5.17) II x - X' lli.aö *

There remains to bound the last intégral of (5.14). By (3.28) and (5.3) we have,

as f Mn rfn ds ̂  0 for all Lef ,

r — r —
(5.18) J^\ Mn{l£ - UM)jnds < X (MnQ) ~ Mn) Uln ds •

Remark that, in the right hand side of (5.18), the only tenus / 0 are only the
intégrais on the edges of dQ which contain at least a point where the constraint
changes from binding to non binding ; then, as the number of such points is
fïnite, and, by the regularity assumption, u e W2>CO(Q\ we get

(5.19) £ ( ï (MHQ) - Mn) ujn ds =
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By combining (5.14)-(5.19) we obtain

(5.20) \%\2>h = 0(h)

from which, by the triangle inequality, the desired estimate follows. •

Case 1(3.31)

THEOREM 5.3 : We assume that (3,31) hold, and we consider the solution u of
(3.10) and the solution ùH of (4.26). Then

(5.21) || ù - t ? | | 2 t * = <**).

Proof : It is immédiate if we consider that, in H2h, \\ . ||2A :— | . |2/t, and
apply the above theorem. •

Case II (3.32)

Now we want to estimate the error u — it in Case IL First of all we décom-
pose the différence (uM — iF) (resp. the interpolate pf u into Vh and the solution
of the discrete problem) as follows

(5.22) uM~ «* =

where

(5.23) ï ? e F h ,

(5.24) p* e P is given by (3.326), ie. ( f, /»•) = 0

(5.25) pe Pis chosen once and for ail, such that p ^ p*

We write now

(5.26) u~it

where, by Theorem 5. % (5.22), (5.23),

(5.27) IIÇ ||2*

We shall get our last goal, aA = 0(A) and pA = 0(A), by considering that u
(resp. w*) minimizes the functional J(.) (resp. Jh(.)) given by (3.9) (resp. (4.9))
and by recalling the following resuit :

(5.28) I^U^CIlnAl^d^L + li^U^)

for ail vh 6 Hm+1(Q) n PFm'°°(£l), i^(r e Pq(T) for ail T, 4 ^ m + 1, (5.28) is
proved, for instance, in [5] following arguments of [4] and [8],
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In our case, with t/1 = Ç, m = 1, we have

(5.29) | Ç |1>0O ^ C | In h I1'2 || Ç ||2,h = 0(* | In A I1 '2) .

THEOREM 5\5 : Letu and i/ be the solutions respectively of (3.7) and(4.8).

(5.30) | | H - M ,

iVoo/ : By (5.26) we have

(5.31) «*+a»Ê + P»/>* + £ = " ' *+£ = «

with (ƒƒ>*) = 0 and Vf* e Vh. Hence, by (5.24),

(5.32)

2 a(w ' W7 + ^^ftfe s) ^ ^(^5 Ö ~^£ ™

= J(M) + 2 ah& ö - ö*("> 9 + ( / £ ) H- ( ƒ w - w7) .

Since

(5.33) J(u) - Jh(it) = - x fl(M, w) + - ^(M*, U*) = - Ö(M + «*, t/1 - M)
2 2 2

(5.27), (5.32) and (5.33) give us

(5.34) a„ = 0(/0.

Owing to (5.34) the equality (5.31) becomes

(5.35) u- p,/>* = uh + 0

where

(5.36) | | e | | „ = 0(*).

Now let us notice that Lemma 3.8 and (ƒ /?*) = MnQ) pfn ds = 0, imply
JG

the existence of s± and J2 e dQ, such that

(5.37) sxeG pfn(s±) < 0

(5.38) s2eG pfn(s2) > 0 .

and we can choose sv s2 to be midpoints of boundary edges.
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We define

(5 39) ^(p) = + fip,*^)
(5 40) g2(fi) = - $pfn(s2),

and we consider (5 35), (5 36)
If pft < 0 we get, using (5 29),

(5 41) 0 < ^((3,) = + hlftisi) = ~ « * ) " W < 0(A | In A | i /2)
Analogously, if ph > 0, we obtain

(5 42) 0 > ~^hpfn(s2)>O(h\\nh\^2)

Hence from (5 41), (5 42) we get that, in any case,

(5 43) I p j ^ O ^ I l n A I 1 ' 2 )

and(5 30) follows from (5 35), (5 36), (5 43) •
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