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MATHEMATICALMODELUNGANDNUMERICALANALYSfS
M0DÉUSAT10N MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 20, n° 2, 1986, p 355 à 368)

A NOTE ON THE APPROXIMATION OF FREE BOUNDARIES
BY FINITE ELEMENT METHODS (*)

by. Ricardo H. NOCHETTO (X) (2)

Communicated by F BREZZI

Abstract — Under the sole assumption of non-degeneracy of the continuous solution and the
knowledge of an U-error estimate, we prove rates of convergence in measure{and in distance) for the
approximate fiee boundanes, they are defined as suitable level sets, hence easy to compute The
results at e apphed to the primai and mixed formulation of the obstacle problem and to singular para-
bohc problems {the two-phase Stefan problem and the porous medium équation) in several variables

Résumé — Nous démontrons ici des résultats de convergence en mesure et en distance pour des
frontières libres approchées, sous la seule hypothèse de non dégénérescence de la solution continue et
en supposant connue V estimation de V erreur LF, les frontières approchées sont définies comme des
ensembles de niveau appr opr lés et donc faciles à calculer Les résultats sont appliqués aux formulations
prvnale et mixte du problème de Vobstacle et à des problèmes paraboliques singuliers à plusieurs
variables d'espace {le problème de Stefan à deux phases et les équations des milieux poreux)

I. INTRODUCTION

In the numerical approximation of free boundary problems (stationary or
not) the détermination of an approximate free boundary « close to the con-
tinuous one is frequently as important as the obtainment of the discrete sol-
ution itself. This happens, for instance, when one deals with models of physical
problems (fîltration problems, melting problems, diffusion problems, etc.), for
which the free boundary has a précise (and relevant !) physical meaning. Besides,
it is well-known that the finite element method provides a séquence of discrete
solutions convergent to the continuous one, with theoretical rates measured in
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356 R. H. NOCHETTO

some Sobolev spaces. However, these error estimâtes do not yield, by them-
selves, any estimate on the rate of convergence of the free boundaries. In [6],
F. Brezzi and L. Caffarelli have proved for the stationary obstacle problem that
the difïiculty can be overcome if the solutions (continuous and discrete) satisfy
a non-degeneracy property. Roughly speeking, this means that the solution
leaves the obstacle (or equivalently, the free boundary) with a certain « mini-
mum speed ». Recently, this idea was applied to the one-phase Stefan problem,
[28].

The purpose of the present paper is to prove error estimâtes in measure and
in distance for the approximation of the exact free boundary without using the
discrete non-degeneracy property. To this end we only assume to know :

1. an Lp-error estimate for the solutions (p < oo),
2. a non-degeneracy property for the continuous solution.

Then, we defme the « discrete free boundary » as a 8-level set of the discrete
solution and, therefore, easy to compute (S related to 1) and 2) ; this idea was
introduced in [2, 3]). Consequently, we give a simple methodology for
Computing approximate free boundaries that converge to the continuous one
with a rate that can be estimated.

The fact of avoiding the discrete non-degeneracy is very important in prac-
tice, because there are several problems whose discrete solutions do not satisfy
it even if the continuous one does, and also our procedure does not imply an
additional computational cost. Moreover, due to low regularity properties of
certain problems, such as singular parabolic problems (see § 4, 5), Lp-error
estimâtes for solutions have been proved, but/? < oo. In the sequel we discuss
these features for some model problems, for which [6] does not apply.

The continuous non-degeneracy property for the obstacle problem (stationary
or evolutionary) was obtained by L. Caffarelli and used for proving regularity
of the free boundary, [10, 20]. In [6] (and also in [28]) this property was repro-
duced for discrete solutions, and next combined with quasi-optimal L°°-error
estimâtes for finite element approximations [2, 24], in order to obtain rates of
convergence (in measure and in distance) for discrete free boundaries. We point
out that the discrete non-degeneracy property as well as the L^-bounds rely
strongly on the discrete maximum principle (D.M.P,). This principle is valid for
C°-piecewise linear splines if the simplices verify a geometrical restriction [16].
For C°-piecewise quadratics splines [15], the D.M.P. is not satisfied. In this
case optimal error estimâtes in H1 are known [7, 9], but not in L°°. The same
happens for mixed methods, for which optimal L2-error estimâtes were shown
in [8]. For these finite element approximations, the D.M.P. is not available.

For singular parabolic problems the non-degeneracy of the continuous sol-
ution is also known under certain qualitative assumptions upon the data,

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



APPROXIMATION OF FREE BOUNDARY 357

[12, 13, 27]. Their numerical approach is usually carried out combining a regu-
larization procedure with standard piecewise linear fmite éléments in space
and backward différences in time. Actually, due to the regularization, we cannot
expect to get a discrete non-degeneracy property : for instance, the solution of
the regularized porous-medium équation is positive everywhere. Besides,
Lp-error estimâtes are known, but p < oo.

The outline of the paper is the following. In § 2 we present the main results
(theorems 2.1 and 2.2), whereas § 3, 4, 5 are devoted to apply them to the
elliptic obstacle problem, the two-phase Stefan problem and the porous medium
problem respectively. We finally point out that if an Lp-error estimate is known
with p < oo, then the rates of convergence for free boundaries are in measure
(theorem 2.1); error estimâtes in distance are obtained for p = oo (theorem
2.2).

2. APPROXIMATION OF THE FREE BOUNDARIES

Let Q be a smooth bounded domain in UN (N ^ 1), and set Q = Q x (O, T)
for O ^ T < oo. Let Q be decomposed into fmite éléments, and let k e (U+Y
be a discretization parameter whose components tend to zero (k might be
h (= mesh size) for a stationary problem; or k = (h, x) for an evolutionary
problem ; or k = (/*, £, x) for a regularized evolutionary problem ; and so on).
Let u and uk be the continuous and discrete solutions respectively of some free
boundary problem.

We define the continuous free boundary by

(2.1) F - d{xeQ:u(x) > 0 } n g (= dQ+ n g ) ,

and the approximatefree boundary by

(2.2) Fk := d { x e Q : uk(x) > 5 } n Q (= 3Qk
+ n g ) ,

where 5 > O is a constant to be determined later on (see theorems 2.1 and 2.2).
Let us consider the following hypotheses :

(Hl) there exists afunction a(k) : (U+Y -> [R+, a(k) J, O as k J, 0 + , such that
for some p, 1 ^ p ^ oo,

II M - uk \\LP{Q) < o(k),

(H2) there exist two constants a, C* > O, such that

meas ( { O < u < e a} ) ^ C*.e, for all O < 8 < s0 .

vol. 20, no 2, 1986



358 R. H. NOCHETTO

Remark 2 . 1 : (H2) is the non-degeneracy property of the continuous solution
u we talked about in the introduction.

Then we have the following error estimate in measure for the free boundaries.

THEOREM 2 . 1 : Assume (Hl) and (H2), and let 5 = a(fc)ap/(1+ap). Then there
exists a constant C > 0 depending only on oc, such that

meas (g + AQk
+) < CC* a(k)p/ii+ap),

where C* is from (H2).
Proof : Since Q+ AQk = (Ô + \Ôfe

+) u (Qk
+ \ g + ) , we can analyse each

set separately. For Q + \Qk
+ we have

Q + \Qt? = { x e Q : 0 < u(x) < 2 5 A uk(x) ̂  5 }

<j {XGQ:U(X}^ 28 A M|C(;C) < 5 } = A u ^ .

Now, we observe that i c { x e g : 0 < u(x) < 2 5 } and, consequently,
by (H2) we get meas (A) ^ C*(2 ô)1/ce. For the set B, notice that if x e B then

u(x) - wk(x) ̂  8. I

Thus, using the estimate of (Hl) we can bound meas (2?) as

el1"-1" p

Therefore we have obtained the bound

(2.3) meas(Ö+\e f e
+) < C*(25)1/a

On the other hand, every x e Qk \Q
+ satisfies uk(x) — u(x) > 8, and then

proceeding as in the analysis of B it follows immediately

(2.4) meas(Q k
+ \e + ) «

Adding (2.3) and (2.4), and choosing 5 = a(kfpK1+ap\ we easily get the
desired estimate. •

A more accurate description of the convergence of the discrete free bound-
aries requires stronger assumptions. For K cz c Q let us define

(2.5) ^ e ( F n K ) : = {xsQ:d(x9FnK) < CKe},

where d(x, F) is the distance between x and F, and CK is a suitable constant
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APPROXIMATION OF FREE BOUNDARY 359

depending on K. Then we consider the hypothesis :

(H3) there exists a constant CK > 0 such that

Kn{0 <u<z«} c <fz(F n K).

Now, we are in a position to prove the following error estimate in distance for
the free boundaries.

THEOREM 2 . 2 : Assume (H 1 ) with p = oo a«rf(H3), and in addition let 5 = a(k).
Then Fk satisfies

(2.6) nnKc^^FnX).

Proof:Lct xeFkn K. Then wk(x) = S = a(£), and applying (Hl) for
p = oo we get,

0 = uk(x) - o(k) < u(x) < uk(x) 4- oQc) = 2 a(k).

Finally, by (H3) we obtain that

x G { x G K : 0 < w(x) < 2 cr(fc) } c ^(2a(k))i/.(F n X),

which proves the theorem. Q

Remark 2.2 : (2.6) says that the discrete free boundary lies in a CK(2 a(Â:))1/a-
neighborhood of the eontinuous one. Moreover, the proof of (2.6) also yields :

Remark 2.3 : clearly (2.6) is valid for K = Q whenever this choice is
admitted in (H3). For instance, this is true if the free boundary F is far away
from <3Q x [0, T],

3. THE OBSTACLE PROBLEM

In this section we consider, for the sake of simplicity, the following elliptic
variational inequality :

r ueK

( 3 t l ) | f Vw.V(t> - u) ̂  f f(v - M), foraUveX,
l Jn Jn

where K = {ve H1^) : v ̂  0, v = g on r }, and Q c IR2 is a bounded
domain with smooth boundary F. Let us assume that

(3.2) feC\Ql #eC3(Q) with ^ O o n T ;

vol. 20, n° 2, 1986



360 R. H. NOCHETTO

then it is well-known that [4, 5,20],

(3.3) u€Cul(Q)nWs^(ÇÏ), 1 < p < oo , s < 2 + - .

We also assume

(3.4) f^C(f)<0 inQ.

Now, we recall some non-degeneracy properties on u proved by L. Caffarelli
in [10] (see also [20]).

THEOREM 3.1 [10] : For all K a c Q there exist constants Cu C2 > 0 such
that for all e > 0,

(3.5) meas ( { x e O : | Vw(x) | < e } n X) ̂  Ct e ,

(3.6) { x e Q : 0 < K(JC) < s 2 } n K c = { x e Q : | Vw(x) | ^ C2 e } n K .

Furthermore, ij the number of singular points of F n K isfinite, then

(3.7) { x 6 Ü : 0 < M(JC) < e2 } n X <

Remark 3.1 : (3.7) needs some explanation. L. Caffarelli and N. Rivière have
studied in [14] the asymptotic behaviour of M and F near a singular point. Then,
combining these results with the good behaviour of u and F near regular
points [20], (3.7) follows.

For the primai finite element approximation of (3.1) by using C°-piecewises
quadratics éléments of Lagrange type (the size not greater than h\ the following
error estimate was proved in [7,9],

(3.8) || u - uh \\HHa) = Ö(/*3/2-p), for all p > 0.

The obstacle constraint was imposed only at the element midpoints (not at the
vertices). Using the inverse inequality in !R2 : || vh ||Loo(Q) ^ C | log A | || vh \\HiiQ),
(3.8)yields

(3.9) || u - uh ||L«,(n) = O(h3l2~t), for all p > 0.

Then we choose 5 = Zz3/2~p in (2.2), and easily get the following conséquence
of theorems 2 .1 ,2 .2 and 3.1.

COROLLARY 3 . 1 : For p > 0 and K cz cz Q, we have

(3.10) meas ((Q+ AQ,+) n K) ^ CPI4~^.

Furthermore, if(3.7) is verifled, then

(3.11) FhnK a ^ - f l ( F n K ) .
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APPROXIMATION OF FREE BOUNDARY 361

Remark 3 .2 : the results of § 2 also apply to the primai formulation with
C°-piecewise linear éléments. If one knows that \\ u — uh ||Loo(a) < a(/z),
setting 5 = a(/z)1/2 one easily gets that the approximate free boundaries
converge in measure and in distance with a rate of order ô. In particular, if the
discrete maximum principle (D.M.P.) is valid, it is known (under the regularity
assumption : u G C1>1(Q)) that a(h) = ch2 | log h |, [24]. In this case we obtain
the same rates of convergence for the free boundaries as in [6]. However, the
geometrical restrictions necessary for a D.M.P. are not easy to verify in practice,
for instance when triangulations are generated automatically. Still, optimal
i^-error estimâtes of order h are known, [7]. Consequently, by using inverse
inequalities in U2, theorems 2.1, 2.2 and 3.1 give

(3.12) meas ((Q+ AQ+) n K) ^ CK{h | log h |)1/2 ;

and if (3.7) holds, then

(3.13) Fn](c

The mixed method of Raviart-Thomas was used in [8] to approximate the
obstacle problem (3.1); the piecewise linear approximation ph of p = Vu
satisfies

(3.14) \\ph-p\\LHÇl) = O{h^2^), forallp>0.

Now, we set § = hx~^ and defme the discrete free boundaries by means of ph

(that is, Fh-= d{xeQ: max (|p\(x) |) > 5 } n îl). Then, applying theorem
i = l , 2

2.1 and (3.5), we get :

COROLLARY3.2 : meas((O+ AQft
+) n K) ^ Ch1'* , for ail p > 0 .

We can also obtain some information about the convergence in distance.
Indeed, by using inverse inequalities, we easily achieve the bound :
\\Ph-P IIL»(O) = O(hll2~t). Next, setting S = h112"* in (2.2) and applying
theorem 2.2 with (3.7), we have

COROLLARY 3.3 : If (3.7) holds, then

F A n K c V » ( F n K ) , forall$>0.

Remark 3.3 : the mixed approximation obtained by piecewise constant
éléments of Raviart-Thomas provides a séquence^ so that \\p—ph Hx,2(n) = O(h\
[8]. Then, by choosing 8 = h2/3 (and defming the approximate free boundaries
by means oïph), theorems 2.1 and 3.1 yield

(3.15) meas ((Q+ Afih
+) n K) ^ CK A2/3.
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362 R. H. NOCHETTO

Remark 3.4 : if g > 0 on F, we can take K = Q in the previous results (see
remark 2.3).

Remark 3 .5 : Theorem 3.1 is also valid for parabolic variational inequalities
(one-phase Stefan problem), [20]. Then the results of this section provide a way
of approximating the continuous free boundary (see also [28]).

4. THE TWO-PHASE STEFAN PROBLEM

In this section we consider the enthalpy formulation of the multidimensional
two-phase Stefan problem (Q <= UN,N ^ 1) :

f y(u)t - Ax u + f(u) = 0 , in g

(4.1) | u = g9 o n r x ( O J )

t ï(w) = Yo> onQ x { 0 } ,

where y(u) (the enthalpy) satisfies the constitutive relation y(u) = c(u) + i/(w).
Hère iï is the Heaviside graph and c is a strictly increasing Lipschitz con-
tinuous function. It is well-known that there is a unique solution u (physically,
the température) ; moreover it has the global regularity properties [11, 17, 18,
19, 23, 31] :

assume u0 := J~1(yo) e Coa(Q) and ƒ e C04(R), then
( 4*2 ) we C°(ë) n L°°(0, T\H\Q)) n H^O, T; L2(Q)).

In addition, an important physical feature is that the free boundary F could be
irregular (for instance, F could vary in a discontinuous manner) even if the data
are very smooth, [19]. Besides, for ƒ / 0, F could degenerate in a set with
positive (N + l)-dimensional Lebesgue measure (mushy région). However,
under some qualitative assumptions upon the data, the author proved in [27] a
non-degeneracy property of u. Let us first state the basic assumptions :

(4.3) & > a > 0 ,

(4.4) F0 = { x e Q : uo(x) = 0 } is a Lipschitz manifold,

(4.5) Au0 — f(u0) ^ a(l + \iFo), where \xFo is a Radon measure sup-

ported on Fo , so that ** ^ (HN„X is the (N - 1)-Hausdorff
dHN_1

measure on Fo)
(4.6) MJ(X) ̂  ad(x9 Fo) for x e Q+ .

Then, using (4.3)-(4.6) plus some regularity hypotheses, we were able to
prove the following resuit.
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APPROXIMATION OF FREE BOUNDARY 363

THEOREM 4.1 [27] : Assume f (0) > 0. Then there exists a Lipschitz function
S : Ù -> [0, T] such that

(4.7) F = {(x,t)eQ:t = S(x)}.

Moreover there exists a constant C > 0 depending only on the data such that

(4.8) M(X, S(X) + r) ^ O , for 0 <r^T - S(x) .

Due to the low regularity of the problem, the numerical approximation of
(4.1) is usually carried out by using a regularization procedure as a first step
[21, 25, 26] (e > 0 will dénote the regularization parameter). The second step
consists in a standard discretization procedure obtained by using C°-piece-
wise linear finite éléments in space and backward différences in time (h and x will
dénote the sizes of the spatial and time décompositions respectively). Let
k = (h, £, x) and let uk be the approximate solution of (4.1). Let us assume the
following non-degeneracy property,

(4.9) meas ({ (x, t) e Q : 0 ^ u(x, t) ^ r }) ^ Cr, for ail r > 0 .

Clearly, (4.8) implies (4.9). Then, the error estimate for températures

(4.10) \\u-uk\\LHQ) ^Ch,

was proved in [25] under the relations h ~ s ~ x2/3.
Consequently, by choosing S = /z2/3 in (2.2) and using theorem 2.1 we obtain

the following error estimate in measure for F.

COROLLARY 4 . 1 : meas (Q + Agfc
+) ^ Ch2/3 .

Remark 4 . 1 : estimâtes like (4.9) and (4.10) are also true for other boundary
conditions, including either linear or non-linear flux through T [25, 26]. There-
fore the previous resuit is extended to this case.

If (4.9) is not satisfîed, the error estimate (4.10) becomes

(4.11) || « - «k ||La(e)

provided that h4i3 ~ e ~ x [21, 25]. Then, in gênerai, we have « two » free
boundaries : F + = d({ u > 0}) n Q, F~ = d{{ u < 0 }) n Q. Finally, if we
know that u leaves either F+orF~ with a « minimum speed » property, we can
still obtain a resuit in measure like Corollary 4.1.
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5. THE POROUS MEDIUM PROBLEM

In this section we consider the porous medium équation in several space
variables (Q c R ^ J V ^ l ) :

f ut - Ax um = 0, in g ,

(5.1) < u = 0, onöQ x (0, T),

l u = w0, on Q x { 0 } ,

where u ( ̂  0) represents the density of a gas that diffuses in Q, v = r wm ~1

is the (normalized) pressure, m > 1 and w0 > 0 is a smooth fonction (say,
wJeCö)1(Q)). The most striking manifestation of the singular character of
(5.1) is that the interface F(t) = dQ+(t) has a finite speed of propagation
(Q+(0 := supp u(., 0). Moreover, Q+(t) expands as t increases and this expan-
sion is strict after a possible waiting time that is related to the shape of u0 near
F o - ôQ+(0). Indeed, let us assume [13, 20, 22]

(5.2) F0eC2 and a o ( x ) ^ C * d(x, Foy / (m=1) for some \i < 2.

Then, the free boundary F(t) is strictly increasing at t = 0 (and also for all
f > 0), i.e. Q + (0 =3 Q+(0) for t > 0. For N = 1 this was proved by B. Knerr
[22]; the proof for N > 1 is similar [13, 20]. Moreover, if uo(x) ^ C*.
<2(x, Fo)*1^"1"1^ ( i ^ 2 and ^+(0) is convex there exists t* > 0 (waiting time)
such that Q+(t) = Q+(0\ for t ^ t*s [1, 20, 22]. The local behavior of F and u
was studied by L. Caffarelli and A. Friedman in [13] (see also [20]). They have
proved :

THEOREM 5.1 [13] : If (5.2) holds, then there exist constants 0 < y < 1 and
Ct > 0 (1 ^ i ^ 4) depending only on t0 > 0 swc/z t/zöt :

(5.3) F = { (x, f) G g : t — S(x) }, where S is uniformly Hölder continuons
{exponent y) in every set { x e Q : S(x) ^ r0 },

(5.4) D.+(t + r) contains a (C1 rlfy)-neighborhood of Q+(t) provided
0 < r < 1, / ^ f0,

(5.5) Q + (t + r) w contained in a (C2 r
ll2)-neighborhood ofQ+(t) provided

0 < r < 1, ^ f 0 ,

(5.6) i;(x, S(x) + r) ^ C3 r
(2"Y)/T i/ S(x) ^ t09r < C4 .

Remark 5.1 : (5.6) deserves a comment because it was not explicitly stated in
[13], neither in [20]. The proof is sketch in the appendix, but relies on lemmas of
intrinsic interest regarding the manner in which the gas is expanding [13, 20].
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APPROXIMATION OF FREE BOUNDARY 365

In one space dimension much more is known about the solution and the
interface. Indeed, if Q+(0) is an interval, the following resuit is well-known [12]
(see also [1, 20, 22]).

THEOREM 5.2 [12] : Suppose that{5.2) holds andN = 1. Then thefree boun-
dary is described by îwo strictly monotone functions Çt (i = 1, 2) such that

(5.7) Ç . e C H O . r U i < Ç 2 ,

(5.8) vM*\ t) = - CXO forallQ<t<T.

Furthermore, for ail i0 > 0 tfœre ex/jte C(/o) > 0 swc/z that

(5.9) t&(0 - ( - iy ^ 0 ^ C(fo).r, /or a// ? 5> /0 (r > 0).

Consequently, under the assumption (5.2) we can assume the non-degen-
eracy property :

(5.10) meas ({(x, t) e Q :t > t0 > 0, 0 < w(x, r) < £a }) < C(t0) s •

Clearly, (5.6) and (5.9) imply (5.10) with a=(2-y) /y (m-1) and a = l / (m-1)
respectively.

The numerical approximation of (5.1) was given in [30], the approximation
scheme being similar to that of the previous section. We only point out that the
regularization procedure consists in replacing y(s) = s1/m by a function with
maximal slope equal to 1/E (S = P m ~\ P regularization parameter in [30]). Let
us call uk the approximate solution, where k = (h, £, x). Then it is known that
[30]:

m2 + 2 m - 1 '

When N > 1, m > 2 the convergence rates are probably not sharp [30].
The original error estimâtes in [30] contain a logarithmic factor that may be
avoided using a recent resuit in [29].

Finally, the results of § 2 may be applied to the porous medium équation.
Let p = m + 1 and set 5 = hmpK1+*p\ with a given by (5.10). Then, taking
(5.10)-(5.11) into account and using theorem 2.1, we get the following error
estimate in measure for the free boundaries.

COROLLARY 5 . 1 : meas ((Q + AQk
+) n{î> t0}) ^ C(t0) haT^ .
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366 R - H - NOCHETTO

Remark 5.2 : In the previous result we may take tQ = 0 whenever this
choice is possible in (5.10) ; for instance, provided N = p. = 1 [1].

APPENDIX

This part of the work is devoted to prove the non-degeneracy property (5.6),
which is an immédiate conséquence of the results of [13]. In the sequel we
reformulate two fundamental lemmas proved in [13] that describe the manner
in which the gas expands in a porous medium. Although they are stated in a
somewhat different way, the proof may be found in [13]. We shall dénote :

X ^(meas^C*)))"1 f v.
JBR(X) JBR(X)

LEMMA A . l : There exist two constants y1? y2 > 0 depending only on m
and N such that if

v(x, t0) = 0 for XG BR(x0), and

f R2

4- v(x, t0 + a ) se Yi — , for a ^ y2 tö 9
JBR(XO)

then v(x, t0 4- a) = 0 for x e BR/6(x0).

LEMMA A.2 : Let v > 0 be given, then there exist constants X, y3, y4 > 0
depending only on v, m and N such that if

r
4-

R
v(x, t0) ^ v — for a ^ y3 t0 ,

R2

then v(xQ, t0 + Xa) ^ y4 — .

Proof of (5.6) : Let x0 e Q so that S(x0) ^ r0 > 0. Then, recalling that S
is uniformly Hölder continuous in { t > ro/2} (with exponent y = y(t0)
and constant C = C(f0)) and taking r ^ ?0/2, we easily get

v(x, S(x0) - r) = 0 , for x e £(,./C)1^o>(Xo) .

Next, let C = 2 min (1, y2, y3) and r < a o ( < y2 y
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Since (x0, S(x0)) e F, lemma A 1 yields

f
JB(r/c)i/y(xo)

Now, use lemma A 2 to obtam

because r ^ y3 y Finally, defming C3 = y4 C~2/y X{l~2)h and C4 = XCtQ9

the last inequality imphes (5 6) completmg the proof •
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