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MATMEMATICALMOOCUJHGAHONUMERICALANALYSIS
MODÉLISATION MATHÉMATIQUE ET AKALYSE NUMÉRIQUE

(Vol 20, n° 3, 1986, p 403 à 426)

FIN1TE ELEMENT SOLUTION
OF A NONLINEAR DIFFUSION PROBLEM

WITH A MOVING BOUNDARY (*)

By Libor CERMÂK and Milos ZLÂMAL (*)

Commumcated by M CROUZEIX

Abstract — The above problem is a boundary-value problem simulating the redistribution of
impurities in semiconductor device structures The problem isformulated in a vanational form. Afully
discrete fimte element solution is constructed It is based on tnangular éléments varying in time
Stabihty of the scheme is proved and an error estimate denved Some numencal results are introduced

Résumé — Nous considérons un problème aux limites mode lisant la distribution des impuretés
dans des matériaux semi-conducteurs Le problème est écrit sous forme vanationnelle, la discrétisation
totale utilise une méthode d'éléments finis associée à une triangulation dépendant du temps Nous
montrons que le schéma obtenu est stable et donnons des estimations de Terreur commise Nous
présentons enfin des résultats numériques

1. INTRODUCTION

In recent years two-dimensional process simulators for modelling and
simulation in the design of VLSI semiconductor devices have appeared (see
Chin, Kump and Dutton [1], Maldonado [4], Penumalli [5]). The underlying
mathematical problem consists in solving numerically the following boundary
value problem :

m d l 9 ( \ { ( , y )

0<y<B}, (1)

= 0, 0 < t < T , H O = {(x,y)\x = cp(j>, tlO<y<B}9

(*) Received on September 1985, revised on December 1985
C) Techmcal Umversity, Brno, Tchécoslovaquie
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404 L. CERMÂK, M. ZLÂMAL

Figure 1.

OU
{u)^ = Y<P„« on T{t), 0<t<T,

u(x,y,0) = u*(x,y) in Q(0).

(3)

(4)

Hère u is the unknown concentration of an impurity, D(u) is the concentration
dependent diffusion coefficient and we assume that D(u) e C°(< 0, oo)) and :

0 < d0 ^ ^ <io~
x Vw^O. (5)

Further, cp is a given function of y and t belonging to C 1 « 0 , 5 > x

< 0, T », ^ - is the derivative in the direction of the outward normal, y is a

constant, q>n is the rate of the motion of T{t) in the direction of the outward

( rs F" / "\ \2~1—1/2\

öcp , /dcpy \ _, . , 1, .j -,cp„= — ^ - 1 + — - and m the problem considered :dtl \dy) J ^
(6)

1

is the given initial concentration. For more details we refer the reader
to[4].

In the present paper the above boundary-value problem is formulated in a
variational form. We construct a fully discrete fmite element solution based
on triangular éléments varying in time. We prove stability and dérive an error
estimate. Finally, some numerical results are introduced
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A NONLINEAR DIFFUSION PROBLEM 405

2. A FINITE ELEMENT SOLUTION

Let Q be a bounded open set in R2. We dénote by Hm>p(Q\ m=0, 1,..., 1 ^
p^ oo, the Sobolev space Hm>p(Q) = { v \ Da v e Lp(fï) V | a | ^ m } normed by
II v \\m,p& = Z \\ D* v

 \\LP(Q)- F ° r P = 2 the index /? will be omitted. The
|a|gm

scalar product in Hm(Q) is denoted (., .)m^. For m = 0 we have if °(Q) = L2(Q)
and instead of ||. \\0XÏ and (., .)o,n w e u s e ^ e notation || • ||n and (., ,)o5 respecti-
vely.

If u is a suffîciently smooth solution of (l)-(4) (we remark that we do not know
any resuit from which existence of a solution of (l)-(4) follows) then by multi-
plying (1) by v e H1 (Sl(t)) and integrating over Q(t) we get :

G (0, T) fé, v) + a(u, t; u, v) - 0 Vv e F(0 = H 1 (£1(0) ; (7)

fl(w, / ; w, r) = D(w) VM.VÏ; dx dy - y \ q>B MV d r . (8)
Jn(f) Jr(t)

The équation (7) will be used for defining a semidiscrete Gnite element
solution. To this end we need to construct a suitable moving triangulation of
the domain Q(t). We consider the one-to-one mapping of the rectangle
ë = < 0 , L o > x < 0 , * > o 5

x = F(ot, p, 0 = <p(P, 0 + a[l - Le l ç(p, 0], y = P • (9)

We cover Q(0) by triangles completed along F(0) by curved éléments in a
manner described in Zlâmal [7]. Let Pk = (xh yk), k = 1,..., d, be the nodes
of this triangulation and let Qk = (afc, (îfc) be their inverse images in the mapping

to 0)

The triangulation 15(0 of Q(f) is determined for t > 0 by the nodes :

Ut) = (xk(t), yk), xfc(t) = F(afe) Pfc, f), 0 < f ^ T . (11)

The éléments of 73 (0 are again triangles or curved éléments. Let K(t) be an
arbitrary element of 73(0- At this moment we use a local notation P^it),
P2{t\ P3(t) of the vertices of K(t). We map K(t) on the (time independent)
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406 L. CERMÂK, M. ZLÂMAL

référence element K with vertices Rt = (0, 0), R2 = (1, 0), R3 = (0, 1) in the
£,, rj -plane. We have (see [7]) :

x = x& n, 0 = I */0 tf/ç, il) + O - \ - n) <Kti, 0.

where :

Nx = 1 - Ç

and :

O(r), ?) = 0 for triangles ,

(12)

for éléments with a curved side P j / ^ (^i(0 = <pO>i, 0»^3(0 = 9(^3^ 0)-
The trial functions are on each element K{t) of the form :

3

v(x, y, t) = v(& r|) = X Ü iV/^, r|), ^ = Ç(x, j , 0 , ri = TI(X, y9t) (13)

where £ = ^(x, j , 0> "H = îlC^ ̂ 5 0 is the inverse mapping to the mapping (12).
We dénote by Vh(i) the set of ail trial functions. We have :

Vh(t)cz V(t)9 O^t^T. (14)

We dénote by ^(x , y,t\k = 1,..., 4 the basis functions of Vh(t). wk is uniquely
determined by wfc(x, y, t) e Vh(t) and by

wfc(P/4 0 = S*> O ^ ^ T . (15)

The notation v will be used also for functions v which are not trial functions.
If t? is defîned on an element K(t) then vfe, r\, t) is defined on K by :

v& r|s t) - v(x(& Ti, 0, XÇ, n), 0 •

Remark : In [4] the mapping (9) was used to transform the équation (1) in
an équation with independent variables a, p and to solve this new problem
by the method of lines. We use (9) for constructing a moving triangulation
TS(?) of Q(t) without transforming (1). As input data only the coordinates of
the nodes of 15(0) are necessary.
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A NONLINEAR DIFFUSION PROBLEM 407

The semidiscrete solution of the problem (l)-(4) is assumed in the form :

V(x9y,t)= tu^wfaKt) (16)

and determined by :

We(0,T) t^,v) +a(U,t;U,v) = Q VveVh(t)
07)

U(x,y,0)= U*(x,y).

U* G Vh(0) is a suitable approximation of a*, e.g. U* is the mterpolate of w*.
If we dénote by JJ(t) the d-dimensional vector (t/1(0, »-, UdO))T ( t n e super-

script T means a transposition), by U* the vector (Lr*(P1),..., U*(Pd))
T and

by M(t\ R(t) and K(£7, t) \hz d x d matrices :

M(t) = { (wp wk)Qit) }d
hk= ! , R(i) - | [wp

then the matrix form of (17) is :

M(ô Ù + R(i) U + X(C7, /) U = 0 ,
(18)

u(o) = u*. :

Hère Ù = -=- U and the matrices M and K are standard mass and stiffness
dt

matrices, respectively. The matrix R is unsymmetric and we show later how to
compute it.

_ _We discrelize^(L8)jnJime. For simplicity, we use a uniform partition of the
interval < 0, T > : tx = i At, i = 0, 1,..., 4 (hence q At = T). In" the lequel
U1, Af1,... means U(f(), M(^), -.- Now we set / — ?I+1 in (18), replace U l + 1 by
A r 1 AU1, AU1 - Ul + 1 - U\ and linearize the nonlinear term in (18). We
get :

Ml+1 AU1 4- At\_Rl + 1 +K{Ü\tl+1))V
l + 1 = 0 , ül = X ^ < + 1 J

fc=i > (19)

U° = U* .

vol 20, no 3, 1986



4 0 8 L. CERMÂK, M. ZLÂMAL

At first glance it is not clear that (19) détermines uniquely U1, i = 1,..., q.
We show later that this is the case. Further, for practical computations it is
necessary to do one more step : to replace curved éléments by triangles (then,
of course Vh(t) <£ V(t)) and to compute ail matrices numerically. Also, we
could use the Crank-Nicolson approach for solving (18) or, more generally,
the 0-method Finally, the linearization of the nonlinear term need not give
suffîciently acurate values. Better values of U I + 1 can be won by iterating
successively :

1>r-\ tl+j] Ul + Ur = 0, r = 1,...,

In the present paper we restrict ourselves to justify the procedure defined by (19).
Remark : The method proposed here can be applied as well for the solution

of the parabolic system of nonlinear équations which governs the case of more
impurities. This system is derived in [4].

3. PROPERTIES OF THE TRIANGULATION

We will consider a family { 7S£ } of the triangulations of Q° from which a
family { *üh(t) } of the triangulations of Q(t) for t e (0, T > is constructed as
described in the preceding section.

Let hKo be the greatest side of an element K° e TS° and :

h — max hKo. (20)
KO e-G»

We consider a family { TS£ } such that :

and the minimum angle condition is satisfied (see Zlâmal [8]), i.e. :

9* ^ %,% = const. > 0 (21)

where $h is the smallest angle of all éléments of TSjJ (if the element is curved
we mean by its angles the angles of the triangle with the same vertices). From
{ TSJJ } we construct { TSh(f) } for all t by means of (11). Let P3(t\ j = 1, 2, 3,
be the vertices of an element K(t) from C6ft(/). First we introducé a lemma
which is a counterpart of theorem 1 from [7]. Before, let us remark that the
quantity h from the second section of [7] is not equal to h defined by (20).
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A NONLINEAR DIFFUSION PROBLEM 409

In this paper, hKo will play the role of h from the second section of [7]. Further,
the assertions of theorem 1 from [7] are true for triangles as well, i.e. they are
true for the mapping (2) from [7].

LEMMA 1 : Let the family {7S£ } of triangulations satisfy the minimum angle

condition (21) and let
dtdy

e C°« 0, B > x < 0, T » . If h defined

by (20) is sufficiently small, h g h0 where h0 does not depend on K(t\ then (12)
maps K one-to-one on K(t) for any t e < 0, T >. In case of curved éléments the
sides RXR2 andR2R3 are linearly mappedon the sides Px{t) P2(t) andP2(t) P3(t),

respectively, the side RXR3 is mapped on the are Px(t) P3(t). The mapping as
well as its inverse are of class C1. Further, its Jacobian determinant J(^, r|, i)
and both these mappings are bounded on < 0, T ) in this way :

(
\.

\D«x{i

Da^(;
Pi

*,y,i)

è\J(^,t)

è Co hKo,

= ^ 0 ^K° '

<-; /̂ > / ,~ 1
= ^ 0 nKQ »

VII

1
/}

D«r\(x,y, t

D«r\(x,y,i

£

)

)

)

0 VII

- 1 ^

hK a1 . 1

1 ^ 1

| a

[-, (22)

1 9

= 1 (23)

In addition, the family { ^h(t) } satisfies the minimum angle condition uniformly
on < 0, T X *•£• *Ae minimum angle &h(t) of ^h{t) satisfies :

9ft(0 ^ 0i V? e < 0, T > . (24)

üfere, Co and§i are positive constants.

Proof : In the sequel C dénotes a positive constant independent o n X ° and
not necessarily the same in any two places. 0(hKo) means a quantity not greater
in absolute value thariChKoJor^ te < 0, T >. First, we state that as in [7] we
can prove :

, t)

.o
dt

, 0
(25)

Let :
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Evidently, Jo = J if the element K(t) is a triangle. From (25) it follows easily :

J = Jo + 0(*îo), d-[t = Jo + Wh) • (26)

One vérifies that :

Jo(0 = [1 - Lô1 (P(P13 0] J* + A(0 (27)

—a, ou —'3 " 1

where :

A(0 = (i - LZ1 a2)(p3 - Pi) [<P(P2> 0 - qKPi, 0] -
- (1 - Le1 <x3) (P2 - Pi) [<p(P3, 0 - cp(p1; 0] •

Using twice Taylor's theorem and the estimate ak — a, = 0(hKO), j , k = 1,
2, 3, one proves :

0(A|o). (28)

Now from theorem 1 of [7] it follows :

Chio ^ J feTi ,0)^ C - ^ I o ,

hence by (26) also :

CA|o ^ Jo(0) ^ C-1 hlo.

Setting t = 0 in (27) one gets, due to (6) and (28) :

Chlo ^ J* ^ C"1 Ajo

and from (27), (28) :

CAjo ^ Jo(0 ^ C- x Aio, J0(0 ^ 0(Aio). (29)

(29) and (26) give (22). The homeomorphism of K onto K(t) as well as the
estimâtes (23) can be proved in the same way as in [7] the homeomorphism of
7\ onto T and the estimâtes (6) and (7) were proved Finally, if y(t) is the
smallest angle of K(t) then :

Jo(0 = 2 area K(t) = a(t) b(î) sin y(t).

M2 AN Modélisation mathématique et Analyse numérique
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A NONLINEAR DIFFUSION PROBLEM 411

Since a(t) = 0(hKO), b(t) = 0(hKO), it follows from (29) that sin y(t) ^ G

LEMMA 2 : Let the assumptions of lemma 1 be satisfied and let u(x> y, t) belong
for each t e < 0, T > to H2(Q(t)\ Then :

II « - « f I I * * * » + * II « - « J Wnnm)) ^ c o h2 II u \\HHQit)), O ^ t ^ T .
(30)

//ere Mj is the interpolate ofu and h is defined by (20).

Proof : We use Bramble-Hilbert lemma and lemma 1 in a standard way.
We return to the matrix R(t), From the définition of the trial functions

and from (15) it follows that on an element K(t) wk(x(^9 r\, t\ y(^9 r\), t) is equal
zero if Pk(t) is not a vertex of K(t) and it is equal to one of the shape functions

/& Tl), j = 1, 2, 3 if Pk(t) is a vertex of K(t). Therefore ^ wk(x& r\91)9

'X^ rl)5 0 = 0. If we carry out the differentiation and set £ = £>(x, y, t\
r\ = r\(x, y, t) we obtain :

Swk(x, y, 0 ôx(£, Ti, 0
dx öt +

x, y, t)

We dénote by G(x, y, t) the function which on each K(t) is defined as follows :

.T I ,0

( )

Then - ^ = - G - ^ and :

(32)

Assuming that G e L°°(Q(0) (19) is equivalent to this variational formulation :

i\ti+1;U
l + 1,v) = 0

(33)

vol 20, n° 3, 1986



412 L. CERMÂK, M. ZLÂMAL

For later purpose we need more than to show that G e L°°(Q(r)). From (31)
and (12) it follows that :

lK(t) = U i ( (x2(t) - x, (X3(t) - Xi(O) Tl +

+ O " % ~ Tl)

(34)

Jr\ = r\{x,y,t)

G is a continuous function on fi(ï) assuming the values Jcm(O at the nodes

Pm(t)9 m = 1,..., d, because the function (1 — Ç — r |)—^"^^i8 equal zero

on the sides RXR2 and R2R3 of the référence element K. On each element it
has continuous derivatives with respect to x and y. What we shall need is the
estimate :

W e < 0 , T > . (35)

To prove it we remark that :

- o g , j,k= 1 ,2,3,

from which we find out easily that :

xk - xt = 0(AKo) Vf e < 0, T > .

(34), (25) and (23) give :

dx
dG
Ôy

C on

4. STABILITY AND ERROR ESTIMATES

We introducé the notation :

Kw..; t;u,v) = a(w, t;u,v) - ^ <p
Jr<r)

(36)

M2 AN Modélisation mathématique et Analyse numérique
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THEOREM 1 : Let the assump lions of lemma 1 be satisfied and let :

b(w, t;v,v)^0 Vu e V(t\ te(0,T>. (37)

Thenfor At sufficiently small, At ̂  At0 where At0 does nol depend on h and on i,
the matrices Ml + 1 + At[Rl + l + K(Ü\ tl + j], i = 0,..., q - 1, of the Sys-
tems (19) are regular so that U1, i — 1,..., q, are uniquely determined. Further-
more, the scheme (19) is unconditionally stable in the L2-norm, le. for At ^ At0

we have :

max || W \\L2m g C || 17° ||L2(Q0) (38)

where C does not depend on At and on h.

Proof : We prove that if U I + 1 satisfîes (19) then for At sufficiently small we
have :

l|tfl + 1lln. + i ^ 0 + CAO || W ||O. (39)

where C dépends neither on At nor on i Taking U° = 0 we get Ul = 0,
i = 1,..., 0 hence the above matrices are regular. Further, from (39) it follows

M r r i + l il < (\ i c A A l + 1 II T ï ° II < o C T II TjO II
II u lln* + 1 = \ l "+" c iXt) II ^ lln° == e \\ u HQO *

To prove (39) we choose v = Ul+1 in (33). We get :

l + 1 - Ü\ C/I + 1 ) n i + 1 - Atl?±j—,Gl + 1 Ul+X

Ata(U\tl + 1; Ul + \ Ul + 1) = 0 . (40)

Gt? ̂ — rfx rfy.

Since Ge/f1 'oo(Q(0) the function Gv belongs to /^(QW) and by Green's
theorem we obtain :

f Gv^dxdy=[ Gv2nxds-\ ^-v
2^ [ \ ^ Gv^dxdy

(41)

where nx is the x-component of the unit outward normal to öQ(r). Since
nx — 0 on the parts ƒ = 0 and y = B oï dQ(t\ since G = 0 when x = Lo

and since we have :

vol 20, no 3, 1986



4 1 4 L. CERMÂK, M. ZLÂMAL

we get :
f f

Gv2 nxds = <p„ v2 dr.
Jan(t) Jr(t)

From (41) it foliows :

^ VV l 9 l Ö(j
Gv-^— dx dy — ~ \ (p„ v ai — - -=— ;

ôx 2 2 3x
n(0 Jr(r) Jn(f)

and we see that (40) is equivalent with :

1\tl+x; Ul+\ Ul+1) - 0. (42)

The first term is bounded from bellow by - || Ul + 1 ||£1 + 1 — - || Ül ||QÏ + I,

the second term by — CAr || Ul + i ||^I + 1 due to (35) and the third term is
nonnegative according to our assumptions. Therefore we get from (42) :

and (39) is proved if we show that :

II Ül llni + i ^ O + CAi) || Ul ||â . (43)

We have :

~ "l]2dxdy.-115-1= S f [ül

As Î7l = Ü l it follows from (22) :

f [Ü1]2 dxdy= [ [W]2 | J l + i | ̂ ÇrfTi ^ f [i71]2 | JM

+ f [^']2|J '7rM
JI |lJtl^rfn ^(i +CA/) f [i/i]

Thus (43) is true.
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A NONLINEAR DIFFUSION PROBLEM 415

Before introducing the error estimate we formulate the assumptions on the
data cp and D and on the exact solution u :

(ii) D(s) a n d D'(s) a r e b o u n d e d for s G < 0, oo),

du du &u_ ô2u du d2u d2u (Pu
(m) dx' dy' dx2' d d ' d' dd9 dd'd2*dx' dy' dx2' dxdy' dt' dxdt9 dydt'.dt2

e L™({ (x, y9t)\te (0, T), (x> y) }) ,

( i v ) II u II2,nw ^ C e (O, T).
2,Q(t)

THEOREM 2 : Le? thefamily {^} of triangulations satisfy the minimum angle
condition (21) and the assumption A befulfilled Further, let the farm b(w, t; u,v)
be uniformly V{t)-elliptic :

b(w, t;v9v)^b0\\v \\2
HHÇÎit)) VÜ e V(t\ t e (0, T > . (45)

Thenfor At sufficiently small, At ^ Àr0 where At0 does not depend on h, there
holds :

max || u1 - W ||L2(ni) + \ At X || w' - U1 \\2
mm

S C[|| u° - U° ||L2(fi0) + h + A?] . (46)

Remark : The estimate in the if *-norm is optimal with respect to h and Ar.

Proof : We use a technique which in case that the boundary does not move
is essentially that of Wheeler [6], Dupont, Fairweather, Johnson [2] and

We begin with a modification of équations (7) and (33). We introducé the
operator Dt defîned on each K(t) by :

Dt z(x, y, t)
K(t)

El
dt %i,y,)

\ = T\(x,y,t)

Evidently :

(47)

(48)
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so that we get :

(Dt u, v)a(t) - (p-, Gv) + afa t;u,v) = 0 VÜ G V(t). (49)

For arbitrary functions v9we V(t) we have by Green's theorem (see the proof
of Theo rem 1) :

Jrw
(50)

The last two equalities give :

(Dt u, v)a(û -f ( w, -=- [OÏ;] 1 + d(u, t ; w, v) = 0 Vu G F(0 (51)

where :

d(w, t\u,v) = b(w, t; u, v) - i f q>B uv dT . (52)

The form c/(w, t; u,v) is uniformly 7(*)-elliptic due to the assumptions (45)
and (6). From (33) and (50) it follows :

tl+x;U' + 1,v) = 0 VveVl
h

+1. (53)

The équations (51) and (53) are the starting relations for derivmg the error
estimate. We décompose the exact solution u in u = Ç + e, where Ç e Vh{i)
is the Ritz approximation defined by :

;u-^v) = 0 VveVh(t). (54)

Later we show that there holds :

II e || 1Mt) + \\Dte || 1Mt) ^Ch t G (0, T > . (55)

Denoting :

u1 - U1 = u1 - Ç + Ç - U1 = é + s1 (56)

we see that with respect to (55) it is sufficient to fmd an estimate for el.
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A NONLINEAR DIFFUSION PROBLEM 417

We introducé one more notation. If z(x, y, Q is defined on Ql we dénote by
z'the function defined on QI+1 by :

?(x> y) l* + i = 2fé(*, y, tl+1), r)(x, y, tl+1\ f j .

This définition is in agreement with the notation Ü1 introduced in (19) since
according the new définition we have wl

k = wfc(̂ (x, y, fl + 1),r|(x, y, tl+1)) = w£+1,
d

hence Ü1 = £ Ul wl
k
+i which is the same as in (19).

k=i

First we show that :

( s l + 1 - ê\ v)at + l + At(s^\^-[Gl+1 v]\ + Atd(U\ tl+1;E
l+\ v) =

\ OX JQt + i
+ \v)1M + 1 VveVl

h
+1 (57)

where \|/l+1 is a function such that :

| ^ ||n, + 1) , 9 = h + Ar. (58)

We proceed as in [9]. With respect to the définition of el and to (53) it suffices
to prove :

+ Atd(Ü\ tl+1-^\ v) - A/(x[/*+1, ̂ W - * (59)

Multiplying (51) by Ai, choosing t = tl+1 and adding to both sides the term
(<o> v)ai + 1, (Ù = ul+1 — ü1 — At Dt ul+1 we obtain :

+ A? 4wl + 1, fl+1 ; ul + \ v) = A ^ l s ü ) l f l . + i (60)

where ^ e F ^ 1 is defined by :

A ^ i , v)w + l = (0), v)at + i Mv e n + 1 • (61)

From Taylor's theorem it follows :
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Differentiating we get :

Ô2Û / £ V \ * ^ ^ * ^

We need also the estimate :

ÔG
dt o, r>

which can be proved in a similar way as (35). Then choosing v = \|/t in (61)
and using the last three relations and the estimate (35) we have :

(62)

Since u = Ç + e it follows from (60) :

4-1 O r y-i i + 1

Af d(ul+l, tl+1; M 1 + 1 , u) = A?(\|/2, ü)1 > n , + i (63)

where \)/2 e F^+ x and there holds .

(64)

a, + i \fveV'h

Using (22) we get :

r r /»fi + i -|2

g C[Af]2 max || Z), e |||(,
t€<(,,tl+1>

If we choose D = \|/2 in (64) and use the preceding estimate and the relations
(55), (35) and (62) we get :

II^ILn-^C»- (65)
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Now let us consider the term d(ul + 1, tl + x ; u
l + 1, v). We have :

d(ul + l, tl + 1 ; u
l + 1, v) = J(M1 + 1 , tl + 1 ; Ç

l + 1, v) =

= d(U\ tl+x ; Ç + \ v) + (\|/3ï v)hQl + 1 (66)

where \|/3 G F^+ X satisfîes :

The estimate (2.4) from [9] holds in our case, too ; hence :

max |VÇ| S C, * e ( 0 , T > .

By (56) we have :

From the last two relations, from the estimate || ê* ||ni + i ^ C \\ el ||n, (can be
proved in the same way as (43)) and from the estimate (55) we get :

.Vv dx dy ^ VC(9+ ||2'|ln.

Choosing v = vj/3 in (67) we dérive :

(59) with \|/l+1 = vk2 + ^3 follows from (63) and (66) and (58) is an easy
conséquence of the above inequality and of (65).

We return to the équation (57). It follows from (50) that for an arbitrary
function v e V(t) it holds :

) l J r ( f )

Therefore setting v = el + 1 in (57) we get

e1 — e1, el )ni + i + - A q e I , — ^ 7 - 81

+ Arè( î7 l , ^ 1 ;
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Using (35) and (45) we have :

The term || s* ||£, + i can be estimated in the same way as || Ül ||£1 + 1 in (43) :

II pi II2 < /1 i f A A M o» ||2

The last two inequalities and (58) give :

II £ l + 1 lln» + i + ^o &t || el + 1 Hïfl. + i ^ (1 + CA?) || e1 ||£, + CA?92 .

Summing for i = 0,...,y — 1 we come to the inequality :

|| eJ Ha, + b0 At £ || e1 ||^ni ^ C[32 + || e° ||20] + C Af '^ || e1 ||^
i = l ' i=0

and using the discrete Gronwall inequality (see Lees [3]) we obtain :

max || sl ||£. + At b0 Z II e1 || Jfl. ^ C[92 + || e° ||^0] -

From this inequality and (55), (56) it follows the assertion (46) of Theorem 2.
It remains to prove (55).
The estimate :

\\e\\1Mt)£Ch (68)

can be derived in a standard way using (30) and (45). In addition we need
a uniform estimate from above of the form d(w, t ; u, v). To this end we have
to show that :

f v2dr^C\\v\\2
lMt) veV{t) (69)

(where C does not depend on t). We have ;

v{q>(y, t), y, t) = v(L0, y9 t) + ^ Ï;(^, y9 t) d%

hence :

Ü2(LO, j , 0 + Lo Uï- \ d£> .
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Multiplying both sides by f 1 + — j

respect to y we obtain :

r w

Now :

J v

and integrating from 0 to B with

v2dy

\\2
HHnit))

which proves (69).
We corne to the other part of (55). The function Ç(JC, y, i) is of the form

d

Z coefficients Ç/0 are continuously differentiable on

< 0, T >. This follows from the fact that the vector Ç(r) is a solution of a linear
system with a regular and continuously differentiable matrix and with a
continuously differentiable right-hand side on the interval < 0, T >. Now
we differentiate the équation d(u, t ; e, Wj) = 0 with respect to t. We have :

\d%dx\ =
^ r d r
— D(u) Ve.VWj dx dy = -j- D(ü) Ve.VWj \ J

v K(t) J K

3(M) J- Ve.VWj | J | dt, dr\

L M e dt Wj r] + h Wjôt
-JL (70)

WexonsLder_lhe_terms_ofthe_right-hand side of this équation. First there holds :

d
£/>(«) = D'(fi)D,ii. (71)

Further we need to compute -z-
ot

and 3-Vwr Hence we consider -=-Vz

where z is any sufficiently smooth function defined on K(t). Since
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where 3" is the Jacobi matrix of the mapping (12), we have :

(72)

The éléments Sjk of the matrix S are bounded :

\Sjk\ZC, ? 6 < 0 , T > (73)

(it is a conséquence of (22), (23)). As Dt w} = 0, we have :

^3^SV^}. (74)

It follows from (22) that the fonction :

^=|m ur1 (75)
is bounded,

| W\<,C, \ e < 0 , T > . (76)

From (70), (71), (72), (74) and (75) we get :

j - D(u) Ve.VWj dxdy = D'(u) Dt u Ve.Vw^ dx dy +

-f D(u) [S Ve 4- VDt e]. Vw, dx dy • (77)[ D(u)[S

f f
+ D(u) Ve. [S VWj] dxdy + D(w) Ve. V w; W rfx rfv

JK(t) JK(t)

Now we difFerentiate the intégral q>n ew3 ds where Kf(t) is the curved
JK'(O

side P i ( 0 ^ ( 0 of the element K(t) lying on r(0. Since :

r . , r x 3 c p _ ,
cpM e w , a.y = — ^ - ew, v , — y* \ dr\ ,

JüC'(t) ^ 0
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we have :

where :

and it holds :

From (52), (77) and (78) we get

= (Y + O " l | Zewj ds + \ cp„ Dt ewj ds (78)

(80)

^d(u,t;e,w}) = 0 = e , w , ) - / ( w 7 ) , y = l , . . . , d

where :

f f
f(v) = - D'(u) Dt u Ve.Vv dx dy - D(u) [S Ve].Vv dx dy -

J
(u)Ve.[SVv]dxdy - f D(«) 1dx dy - evZ dT .

Jr(t)

(81)

From the last two équations we obtain :

d(u,t;Dte,v)=f(v) VveVh(t).

It remains to prove :

\\Dte\\1Wt)£Ch9 * 6 ( 0 , T > . (82)

First we estimate the term f(v). From (68), (69), (73), (76) and (80) we get :

\f(v)\ £Ch\\v\\1Mt). (83)

Using (45), (81) and (83) we dérive :

bo\\v- D t C l l u x o ^ d(u, t;v- Dt Çv - DtQ =

vol 20,110 3, 1986
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Hence :

Let us dénote :

L. CERMÂK, M. ZLAMAL

Dtu -v \\1Xiit) + h] , v G Vh(t) . (84)

du du
= F-l(x,y,t)

P

Since g = G at vertices of the element X(0 we get, using (25) and (35) :

II 0 " G ||0>fl0fJC(f) + A || » - G\\UooMt) tkCh2

and consequently :

\\Dtu- ^w||1)Q(f ) ^ CA.

(82) follows from (84), (85) and (30) if we choose v = (dt ü)r

(85)

5. NUMERICAL RESULTS

The method was tested on an example where we succeeded to find the
exact solution. The équation is linear (D(u) = 1), the domains Q° and Q are
the same and equal to the square < 0, 1 > x < 0, 1 > (Lo = B = 1), the moving
boundary is simple (cp(>>, 0 — 0 a n d w e had to add an inhomogeneous term
in the équation (1). The example reads :

in Q(0, 0 < t < 0.5 ,

Q(r) = { (x, j ) | t < x < 1,

dudu du

y=o
= 0

du c3 - = u tor x — t
dx

x, y9 0) = (cos ny + 2) (x - ^x2 -h 1

Here

, y , 0 = ( c o s n y + 2 ) (f - 1) + n 2 c o s %y( x - ^ x 2 + ^
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The exact solution is

u = (cos ny + 2) [ x - = x2 + ^ t2 - 2 t + 1 ).

The L2-scalar products are computed numerically using the formula

[ F(x, y) dxdy=± area(T) [F(i>x) + F(P2)

for computation of an intégral over a triangle T with vertices Pu P2, P3. The
line intégral over the moving boundary T(t) is computed piecewise by the
trapezoidal rule. The triangulations are of the form given in figure 2. In the
table there are given relative errors E in percents,

E = 100 max max t-U'j

Figure 2. — Triangulation of the domain fl0 with Nx = 5, Ny = 6.
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for some Nx, Ny and At Here d is the number of nodes (equals to the number

of unknowns), q is the number of time steps and Nx = h~ \ Ny = hy
x (con-

cernmg hx and hy see fig 2)

Ny

d

At

<l

E

5

6

45

1
10

5

2 53

1
20

10

2 19

7

9

84

1
14

7

1 90

1
28

14

0 99

9

11

125

1
18

9

162

1
36

18

0 74

11

14

186

1
22

11

147

1
44

22

0 55

13

17

259

1
26

13

131

1
52

26

0 52
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