M2AN. Mathematical modelling and numerical analysis
 - Modélisation mathématique et analyse numérique

J. HASLINGER

P. NEITTAANMÄKI

Shape optimization in contact problems. Approximation and numerical realization

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome 21, $\mathrm{n}^{\circ} 2$ (1987), p. 269-291
http://www.numdam.org/item?id=M2AN_1987__21_2_269_0
© AFCET, 1987, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

SHAPE OPTIMIZATION IN CONTACT PROBLEMS. APPROXIMATION AND NUMERICAL REALIZATION (*)

by J. Haslinger (${ }^{1}$) and P. NeittaAnmäki (${ }^{2}$)

Communicated by P. G. CIARLET

Abstract

The optimal shape design of a two-dimensional elastic body on rigid foundation is analyzed. The relation between the continuous problem and the discrete problem achieved by FEM is presented. A numerical realization together with the sensitivity analysis is given. Several numerical examples to illustrate the practical use of the methods are presented.

Résumé. - On étudie l'approximation du problème de l'optimisation de domaine dans un problème de contact d'un corps élastique, unilatéralement supporté par la fondation rigide. Deux essais numériques sont présentés.

1. INTRODUCTION

This paper deals with the shape optimization of a contact surface of a twodimensional elastic body unilaterally supported by a rigid frictionless foundation. The problem is to redesign the contact surface in such a way that the total potential energy of the system in the equilibrium state will be minimal.

In [9] the proof of the existence of an optimal shape is given. In the present paper we shall study finite element discretization of this problem and discuss the relation between continuous and discrete models (Sections 2 and 3). When the discretization has been done, our discrete design formulation leads to a nonconvex but smooth minimization problem with linear constraints. The evaluation of the cost functional involves the solving of the nonlinear state problem (variational inequality). Consequently, NLPalgorithm should use as few function evaluations as possible. Clearly, some gradient information is then necessary. In Section 4 we shall present

[^0][^1]formula for the derivative of the cost functional. For the case where the method of penalization is utilized for solving the state problem we refer to [$7,8,10$].

In chapter 5 several numerical examples are given. They show, among others, that as a by-product we can find a shape for the contact part of the body that the contact stress will be evenly distributed when geometrical constraints are appropriate. This is of a great practical importance for designers. From the mathematical point of view, the functional of the total potential energy is easy to handle whereas the direct minimization of contact stresses is more involved.

In this paper the shape design problem for an elastic body on a rigid frictionless foundation is analyzed. When the friction between the body and the support is taken into account the problem is technically more complicated but principally the methods present here can be applied. For the case of a given friction - which is the simplest model - we refer to the paper [6].

For the mathematical theory of optimum shape design problem with classical boundary value problems together with approximation we refer to the recent book of O. Pironneau [16]. See also conference volumes [1, 11, 13].

2. SETTING OF THE PROBLEM

Let us consider a two-dimensional elastic body $\Omega \equiv \Omega(\alpha) \subset \mathbb{R}^{2}$ having the following geometrical structure :

$$
\Omega(\alpha)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid a<x_{1}<b, 0 \leqslant \alpha\left(x_{1}\right)<x_{2}<\gamma\right\} .
$$

a, b, γ are given constants and $\alpha \in C^{0,1}([a, b])$, i.e. α is a Lipschitz function on $[a, b], \quad \partial \Omega(\alpha)=\bar{\Gamma}_{D} \cup \bar{\Gamma}_{P} \cup \bar{\Gamma}_{C}(\alpha), \quad \Gamma_{D} \neq \varnothing$ (possible partition of $\partial \Omega(\alpha)$ is given by Fig. 2.1).

The shape of the contact surface $\Gamma_{C}(\alpha)$ is described by a graph of the function α, belonging to the set $\mathscr{U}_{a d}$, where

$$
\begin{align*}
& \mathscr{U}_{a d}=\left\{\alpha \in C ^ { 0 , 1 } ([a , b]) \left|0 \leqslant \alpha\left(x_{1}\right) \leqslant C_{0}<\gamma,\left|\alpha^{\prime}\left(x_{1}\right)\right| \leqslant C_{1}\right.\right. \tag{2.1}\\
&\left.x_{1} \in[a, b], \text { meas } \Omega(\alpha)=C_{2}\right\}
\end{align*}
$$

C_{0}, C_{1}, C_{2} are given positive constants such that $\mathscr{U}_{a d} \neq \varnothing$.
Suppose that $\Omega(\alpha)$ is unilaterally supported by a rigid frictionless foundation (here by the set $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2} \leqslant 0\right\}$ and subject to a body force $\mathbf{F}=\left(F_{1}, F_{2}\right)$ and surface tractions $\mathbf{P}=\left(P_{1}, P_{2}\right)$ on Γ_{P}.

Classical solution of the contact problem without friction is defined as a

a
Fig. $2.1 \Omega(\alpha)$
displacement field $\mathbf{u}=\mathbf{u}(\alpha)=\left(u_{1}(\alpha), u_{2}(\alpha)\right)$ (the dependence of \mathbf{u} on α is emphasized by writing $\mathbf{u}=\mathbf{u}(\alpha)$), which is in the equilibrium state with applied forces, i.e.

$$
\begin{array}{rll}
\frac{\partial}{\partial x_{j}} \tau_{i j}(\mathbf{u})+F_{i}=0 & \text { in } \quad \Omega(\alpha), & i=1,2 \\
T_{i} \equiv \tau_{i j}(\mathbf{u}) n_{j}=P_{i} & \text { on } \quad \Gamma_{P}, & i=1,2 \tag{2.3}
\end{array}
$$

$\mathbf{n}=\left(n_{1}, n_{2}\right)$ is the unit normal vector to $\partial \Omega$. We suppose that the stress tensor $\tau(\mathbf{u})=\left(\tau_{i j}(\mathbf{u})\right)_{i, i=1}^{2}$ is related to the linear strain tensor $\varepsilon(\mathbf{u})=$ $\left(\varepsilon_{i j}(\mathbf{u})\right)_{i, j=1}^{2}$ by means of the linear Hooke's law

$$
\tau_{i j}(\mathbf{u})=C_{i j k l} \varepsilon_{k l}(\mathbf{u}), \quad \varepsilon_{k l}(\mathbf{u})=\frac{1}{2}\left(\frac{\partial u_{k}}{\partial x_{l}}+\frac{\partial u_{l}}{\partial x_{k}}\right)
$$

with elasticity coefficients $C_{i j k l}$ satisfying the usual symmetry and ellipticity conditions in $\hat{\Omega}=(a, b) x(0, \gamma), C_{i j k l} \in L^{\infty}(\hat{\Omega})$. Besides (2.2) and (2.3) the following boundary conditions will be assumed :

$$
\begin{gather*}
u_{i}=0 \quad \text { on } \quad \Gamma_{D}, \quad i=1,2 \tag{2.4}\\
u_{2}\left(x_{1}, \alpha\left(x_{1}\right)\right) \geqslant-\alpha\left(x_{1}\right) \quad \forall x_{1} \in[a, b] \tag{2.5}\\
T_{1}(\mathbf{u})=0 \quad \text { on } \quad \Gamma_{C}(\alpha) \tag{2.6}\\
T_{2}(\mathbf{u}) \geqslant 0, \quad\left(u_{2}+\alpha\right) T_{2}(\mathbf{u})=0 \quad \text { on } \quad \Gamma_{C}(\alpha) . \tag{2.7}
\end{gather*}
$$

vol. 21, n ${ }^{\circ} 2,1987$

In order to give the variational formulation of (2.2)-(2.7) we introduce a Hilbert space $V(\alpha)$ of virtual displacements

$$
\begin{equation*}
V(\alpha) \equiv V(\Omega(\alpha))=\left\{\mathbf{v} \in\left(H^{1}(\Omega(\alpha))\right)^{2} \mid v_{i}=0 \text { on } \Gamma_{D}, i=1,2\right\} \tag{2.8}
\end{equation*}
$$

and its closed convex subset $K(\alpha)$ of admissible displacements

$$
\begin{align*}
& K(\alpha) \equiv K(\Omega(\alpha))= \tag{2.9}\\
& \quad=\left\{\mathbf{v} \in V(\alpha) \mid v_{2}\left(x_{1}, \alpha\left(x_{1}\right)\right) \geqslant-\alpha\left(x_{1}\right) \forall x_{1} \in(a, b)\right\} .
\end{align*}
$$

The variational form of (2.2)-(2.7) is now given by (see [12])

$$
(\mathscr{P}(\alpha)) \quad\left\{\begin{array}{l}
\text { find } \mathbf{u}=\mathbf{u}(\alpha) \in \bar{K}(\alpha) \text { such that } \\
(\tau(\mathbf{u}), \varepsilon(\mathbf{v}-\mathbf{u}))_{0, \Omega(\alpha)} \geqslant\langle L, \mathbf{v}-\mathbf{u}\rangle_{\alpha}
\end{array} \quad \forall \mathbf{v} \in K(\alpha)\right.
$$

where

$$
(\tau(\mathbf{u}), \varepsilon(\mathbf{v}))_{0, \Omega(\alpha)} \equiv \int_{\Omega(\alpha)} \tau_{i j}(\mathbf{u}) \varepsilon_{i j}(\mathbf{v}) d x
$$

and

$$
\langle L, \mathbf{v}\rangle_{\alpha} \equiv \int_{\Omega(\alpha)} F_{i} v_{i} d x+\int_{\Gamma_{P}} P_{i} v_{i} d s \equiv(\mathbf{F}, \mathbf{v})_{0, \Omega(\alpha)}+(\mathbf{P}, \mathbf{v})_{0, \Gamma_{P}}
$$

with $\mathbf{F} \in\left(L^{2}(\hat{\Omega})\right)^{2}, \mathbf{P} \in\left(L^{2}(\partial \hat{\Omega})\right)^{2}$.
Shape optimization problem now will be stated as follows

$$
\text { (P) }\left\{\begin{array}{l}
\text { find } \alpha^{*} \in \mathscr{U}_{a d} \text { such that } \\
E\left(\alpha^{*}\right) \leqslant E(\alpha) \quad \forall \alpha \in \mathscr{U}_{a d},
\end{array}\right.
$$

where

$$
E(\alpha) \equiv \frac{1}{2}(\tau(\mathbf{u}(\alpha)), \varepsilon(\mathbf{u}(\alpha)))_{0, \Omega(\alpha)}-\langle L, \mathbf{u}(\alpha)\rangle_{\alpha}
$$

with $\mathbf{u}(\alpha) \in K(\alpha)$ being the solution of $(\mathscr{P}(\alpha))$, is the total potential energy evaluated in the equilibrium state. According to [9] it holds :

ThEOREM 2.1: Let $\mathscr{U}_{a d}$ be given by (2.1). Then there exists at least one solution α^{*} of (\mathbf{P}).

3. FINITE ELEMENT APPROXIMATION OF (P)

Approximation of (\mathbf{P}) will be given by means of finite element technique. We suppose that $\mathscr{U}_{a d}$ is replaced by

$$
\begin{equation*}
\mathscr{U}_{a d}^{h} \equiv\left\{\alpha_{h} \in C([a, b])\left|\alpha_{h}\right|_{\left[a_{i-1}, a_{i}\right]} \in P_{1}\left(\left[a_{i-1}, a_{i}\right]\right)\right\} \cap \mathscr{U}_{a d} \tag{3.1}
\end{equation*}
$$

where $a \equiv a_{0}<a_{1}<\cdots<a_{N} \equiv b$ is a partition of $[a, b]$ and $P_{1}\left(\left[a_{i-1}, a_{i}\right]\right)$ denotes the set of linear functions over $\left[a_{i-1}, a_{i}\right]$. For any $\alpha_{h} \in \mathscr{U}_{a d}^{h}$ we define

$$
\Omega\left(\alpha_{h}\right)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid a<x_{1}<b, \alpha_{h}\left(x_{1}\right)<x_{2}<\gamma\right\},
$$

i.e. $\Omega\left(\alpha_{h}\right)$ is a polygonal domain and the variable part of the boundary $\Gamma_{C}(\alpha)$ is now replaced by a piecewise linear arc $\Gamma_{C}\left(\alpha_{h}\right)$.

By $\mathscr{C}_{h}\left(\alpha_{h}\right), \alpha_{h} \in \mathscr{U}_{a d}^{h}$ we denote the triangulation of $\Omega\left(\alpha_{h}\right)$ such that the whole segment

$$
I_{i}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in\left[a_{i-1}, a_{i}\right], x_{2}=\alpha_{h}\left(x_{1}\right)\right\}
$$

is the whole side of a triangle $T_{i} \in \mathcal{C}_{h}\left(\alpha_{h}\right)$ and satisfying the usual requirements, concerning the mutual position of two triangles, belonging to $\mathfrak{C}_{h}\left(\alpha_{h}\right)$, [3]. Moreover, we shall assume only such families of $\left\{\boldsymbol{\mathcal { O }}_{h}\left(\alpha_{h}\right)\right\}$, $h \in(0,1), \alpha_{h} \in \mathscr{U}_{a d}^{h}$, which are :
(j) Regular uniformly with respect to $h \rightarrow 0^{+}$and $\alpha_{h} \in \mathscr{U}_{a d}^{h}$, i.e. there exists $\delta_{0}>0$ independently on $h \in(0,1)$ and $\alpha_{h} \in \mathscr{U}_{a d}^{h}$ such that all interior angles of all triangles $T_{i} \in \mathcal{C}_{h}\left(\alpha_{h}\right)$ are greater or equal to δ_{0} (for practical applications some other technical restrictions will be added, see Section 5).
(ji) For any $h \in(0,1)$ fixed, triangulations $\left\{\boldsymbol{\mathcal { O }}_{h}\left(\alpha_{h}\right)\right\}, \alpha_{h} \in \mathscr{U}_{a d}^{h}$ depend continuously on α_{h}.

Finally, the symbol $\Omega_{h}\left(\alpha_{h}\right)$ will denote the set $\Omega\left(\alpha_{h}\right)$ with a given triangulation $\mathfrak{C}_{h}\left(\alpha_{h}\right)$; for the sake of simplicity we also use the notation Ω_{h} instead of $\Omega_{h}\left(\alpha_{h}\right)$. With any $\mathfrak{C}_{h}\left(\alpha_{h}\right)$ a closed convex subset $K_{h}\left(\alpha_{h}\right)$ of functions will be associated :

$$
\begin{gathered}
V_{h}\left(\alpha_{h}\right) \equiv\left\{\mathbf{v}_{h} \in\left(C\left(\overline{\Omega\left(\alpha_{h}\right)}\right)\right)^{2}\left|\mathbf{v}_{h}\right|_{T_{i}} \in\left(P_{1}\left(T_{i}\right)\right)^{2}\right. \\
\left.\quad \text { for any } T_{i} \in \mathfrak{G}_{h}\left(\alpha_{h}\right), \mathbf{v}_{h}=0 \text { on } \Gamma_{D}\right\} \\
K_{h}\left(\alpha_{h}\right) \equiv V_{h}\left(\alpha_{h}\right) \cap K\left(\alpha_{h}\right)
\end{gathered}
$$

The approximation of (\mathbf{P}) is now defined as follows:

$$
(\mathbf{P})_{h}\left\{\begin{array}{l}
\text { find } \alpha_{h}^{*} \in \mathscr{U}_{a d}^{h} \text { such that } \\
E_{h}\left(\alpha_{h}^{*}\right) \leqslant E_{h}\left(\alpha_{h}\right) \quad \forall \alpha_{h} \in \mathscr{U}_{a d}^{h}
\end{array}\right.
$$

where

$$
E_{h}\left(\alpha_{h}\right)=\frac{1}{2}\left(\tau\left(\mathbf{u}_{h}\left(\alpha_{h}\right)\right), \varepsilon\left(\mathbf{u}_{h}\left(\alpha_{h}\right)\right)\right)_{0, \Omega\left(\alpha_{h}\right)}-\left\langle L, \mathbf{u}_{h}\left(\alpha_{h}\right)\right\rangle_{\alpha_{h}}
$$

in which $\mathbf{u}_{h}\left(\alpha_{h}\right) \in K_{h}\left(\alpha_{h}\right)$ is the solution of the discrete state inequality:

$$
\left(\mathscr{P}\left(\alpha_{h}\right)\right)_{h} \quad\left(\tau\left(\mathbf{u}_{h}\right), \varepsilon\left(\mathbf{v}_{h}-\mathbf{u}_{h}\right)\right)_{0, \Omega\left(\alpha_{h}\right)} \geqslant\left\langle L, \mathbf{v}_{h}-\mathbf{u}_{h}\left(\alpha_{h}\right)\right\rangle_{\alpha_{h}} \quad \forall \mathbf{v}_{h} \in K_{h}\left(\alpha_{h}\right)
$$

Using the classical compactness arguments and (jj) one can easily prove the existence of at least one solution α_{h}^{*} of $(\mathbf{P})_{h}$. Our main goal will be devoted to the study if there is any relation among solutions of (\mathbf{P}) and $(\mathbf{P})_{h}$ if $h \rightarrow 0^{+}$. Before doing this we present some auxiliary results, necessary in what follows.

LEMMA 3.1: Let $\alpha_{h} \Rightarrow \alpha$ (uniformly) in $[a, b]$ as $h \rightarrow 0^{+}, \alpha_{h} \in \mathscr{U}_{a d}^{h}$, $\alpha \in \mathscr{U}_{\text {ad }}$. Let $\mathbf{w} \in K(\alpha)$ and let $\tilde{\mathbf{w}}$ denote the Calderon extension of \mathbf{w} from $\boldsymbol{\Omega}(\alpha)$ on $\hat{\Omega}$. Then there exists a sequence $\left\{\mathbf{w}_{i}\right\}, \mathbf{w}_{i} \in\left(H^{2}(\hat{\Omega})\right)^{2}$ (even more regular) such that

$$
\begin{gather*}
\mathbf{w}_{i} \rightarrow \tilde{\mathbf{w}} \text { in }\left(H^{1}(\hat{\Omega})\right)^{2}, \quad i \rightarrow \infty \tag{3.2}\\
\text { for any } i \text { fixed, }\left.\mathbf{w}_{i}\right|_{\Omega_{h}} \in K\left(\alpha_{h}\right) \text { for all } h \leq h_{0}(i) . \tag{3.3}
\end{gather*}
$$

For the proof see [10].
LEMMA 3.2: Let $\alpha_{h} \in \mathscr{U}_{a d}^{h}, \alpha \in \mathscr{U}_{a d}$ be such that $\alpha_{h} \Rightarrow \alpha$ in $[a, b]$ as $h \rightarrow 0^{+}$. Let $\mathbf{u}_{h} \equiv \mathbf{u}_{h}\left(\alpha_{h}\right)$ be the solutions of $\left(\mathscr{P}\left(\alpha_{h}\right)\right)_{h}$. Then there exists a subsequence $\left\{\mathbf{u}_{h_{j}}\right\} \subset\left\{\mathbf{u}_{h}\right\}$ such that

$$
\begin{equation*}
\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}\right)-\mathbf{u}(\text { weakly }) \text { in }\left(H^{1}\left(G_{m}(\alpha)\right)\right)^{2} \text { as } j \rightarrow \infty \tag{3.4}
\end{equation*}
$$

for any m integer, where $\mathbf{u}=\mathbf{u}(\alpha) \in K(\alpha)$ is the solution of $(\mathscr{P}(\alpha))$ and

$$
G_{m}(\alpha)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \in[a, b], \alpha\left(x_{1}\right)+\frac{1}{m}<x_{2}<\gamma\right\} .
$$

Proof: Using the fact that the constant in Korn's inequality can be chosen independently on $\alpha \in \mathscr{U}_{a d}$ (see $[15,10]$) we see that $\left\{\mathbf{u}_{h}\right\}$ is bounded in the following sense :

$$
\begin{equation*}
\exists C>0:\left\|\mathbf{u}_{h}\right\|_{1, \Omega_{h}} \leq C \quad \forall h \in(0,1) \tag{3.5}
\end{equation*}
$$

Let m integer be fixed. Then there exists $h_{0}=h_{0}(m)$ such that $\bar{G}_{m}(\alpha) \subset \Omega_{h}$ for all $h \leq h_{0}(m)$. Consequently,

$$
\begin{equation*}
\left\|\mathbf{u}_{h}\right\|_{1, G_{m}(\alpha)} \leqslant\left\|\mathbf{u}_{h}\right\|_{1, \Omega_{h}} \leqslant C \tag{3.6}
\end{equation*}
$$

and one may extract a subsequence $\left\{\mathbf{u}_{h_{1}}\right\} \subset\left\{\mathbf{u}_{h}\right\}$ such that

$$
\mathbf{u}_{h_{1}}-\mathbf{u}^{(m)} \quad \text { in } \quad\left(H^{1}\left(G_{m}(\alpha)\right)\right)^{2}
$$

where $\mathbf{u}^{(m)} \in V\left(G_{m}(\alpha)\right) \equiv\left\{\mathbf{v} \in\left(H^{1}\left(G_{m}(\alpha)\right)\right)^{2} \mid \mathbf{v}=0\right.$ on $\left.\Gamma_{D} \cap \partial G_{m}(\alpha)\right\}$.

Analogously, there exists $h_{0}(\dot{m}+1)$ such that $\bar{G}_{m}(\alpha) \subset \bar{G}_{m+1}(\alpha) \subset \Omega_{h}$ for all $h \leq h_{0}(m+1)$ and a subsequence $\left\{\mathbf{u}_{h_{2}}\right\}$ of $\left\{\mathbf{u}_{h_{1}}\right\}$ can be chosen such that

$$
\mathbf{u}_{k_{2}}-\mathbf{u}^{(m+1)} \quad \text { in } \quad\left(H^{1}\left(G_{m+1}(\alpha)\right)\right)^{2} .
$$

Clearly $\mathbf{u}^{(m+1)} \in V\left(G_{m+1}(\alpha)\right)$ and $\mathbf{u}^{(m)} \equiv \mathbf{u}^{(m+1)}$ on $G_{m}(\alpha)$.
Repeating the same procedure for any k integer, we see that there exists $h_{0}(m+k)$ and a subsequence $\left\{\mathbf{u}_{h_{k}}\right\}$ of $\left\{\mathbf{u}_{h_{k-1}}\right\}$ such that

$$
\mathbf{u}_{h_{k}}-\mathbf{u}^{(m+k)} \quad \text { in } \quad\left(H^{1}\left(G_{m+k}(\alpha)\right)\right)^{2}
$$

$\bar{G}_{m+k-1}(\alpha) \subset \bar{G}_{m+k}(\alpha) \subset \Omega_{h} \quad$ for \quad all $\quad h \leq h_{0}(m+k)$. Moreover, $\mathbf{u}^{(m+k)}=\mathbf{u}^{(m+k-1)}$ on $G_{m+k-1}(\alpha)$ and $\mathbf{u}^{(m+k)} \in V\left(G_{m+k}(\alpha)\right)$. Denoting by $\left\{\mathbf{u}_{h_{j}}^{D}\right\}$ the diagonal subsequence defined by $\left\{\mathbf{u}_{h_{j}}\right\}$ we see that

$$
\begin{equation*}
\mathbf{u}_{h_{j}}^{D}-\mathbf{u} \quad \text { in }\left(H^{1}\left(G_{m}(\alpha)\right)\right)^{2} \text { for any } m \tag{3.7}
\end{equation*}
$$

where $\left.\mathbf{u}\right|_{G_{m}(\alpha)} \equiv \mathbf{u}^{(m)}$. Clearly $\mathbf{u} \in V(\alpha)$. Next, instead of $\left\{\mathbf{u}_{h_{j}}^{D}\right\}$ we shall write simply $\left\{\mathbf{u}_{h_{j}}\right\}$. Now we prove that $\mathbf{u} \equiv \mathbf{u}(\alpha)$ solves $(\mathscr{P}(\alpha))$. The fact that $\mathbf{u} \in K(\alpha)$ follows from Lemma 5.2 in [9]. It remains to verify that

$$
(\tau(\mathbf{u}), \varepsilon(\mathbf{w}-\mathbf{u}))_{0, \Omega(\alpha)} \geq\langle L, \mathbf{w}-\mathbf{u}\rangle_{\alpha} \quad \forall \mathbf{w} \in K(\alpha)
$$

Let $\mathbf{w} \in K(\alpha)$ be fixed. Accordingly to Lemma 3.1 there exists a sequence $\left\{\mathbf{w}_{i}\right\}$ such that (3.2) and (3.3) are satisfied. Let i be fixed. Then $\left.\mathbf{w}_{i}\right|_{\Omega_{h_{j}}} \in K\left(\alpha_{h_{j}}\right) \cap\left(H^{2}\left(\Omega\left(\alpha_{h_{j}}\right)\right)\right)^{2}$ for h_{j} sufficiently small (h_{j} is a filter of indices, satisfying (3.7)). Let $\mathbf{w}_{i h_{j}} \equiv \Pi_{h_{j}} \mathbf{w}_{i}$ denote the piecewise linear Lagrange interpolate of $\left.\mathbf{w}_{i}\right|_{\Omega_{h_{j}}}$. It is easy to see that $\mathbf{w}_{i h_{j}} \in K_{h_{j}}\left(\alpha_{h_{j}}\right)$.

Thus

$$
\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0, \Omega_{h_{j}}} \geq\left\langle L, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right\rangle_{\alpha_{h_{j}}}
$$

Let m (integer) be fixed. Then for h_{j} sufficiently small :

$$
\begin{aligned}
\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0, \Omega_{h_{j}}}= & \left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0, G_{m}(\alpha)}+ \\
& +\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0, \Omega_{h_{j}} \backslash \Omega(\alpha)} \\
& +\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0,\left(\Omega(\alpha) \backslash G_{m}(\alpha)\right) \cap \Omega_{h_{j}}} \\
\leq & \left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0, G_{m}(\alpha)} \\
& +\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}\right)\right)_{0, \Omega_{h_{j}} \backslash \Omega(\alpha)} \\
& +\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}\right)\right)_{0,\left(\Omega(\alpha) \backslash G_{m}(\alpha)\right) \cap \Omega_{h_{j}}}
\end{aligned}
$$

Now

$$
\begin{equation*}
\lim _{h_{j} \rightarrow 0^{+}}\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0, G_{m}(\alpha)} \leq\left(\tau(\mathbf{u}), \varepsilon\left(\mathbf{w}_{i}-\mathbf{u}\right)\right)_{0, G_{m}(\alpha)} \tag{3.8}
\end{equation*}
$$

taking into account (3.7), (j) and well known approximation properties of the Lagrange interpolate $\mathbf{w}_{i h_{j}}$. As $\alpha_{h_{j}} \Rightarrow \alpha$ in [a, b] and (3.6) holds, we see that

$$
\begin{equation*}
\lim _{h_{j} \rightarrow 0^{+}}\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}\right)\right)_{0, \Omega_{h_{j}} \backslash \Omega(\alpha)}=0 \tag{3.9}
\end{equation*}
$$

Finally,
$\limsup _{h_{j} \rightarrow 0^{+}}\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}\right)\right)_{0,\left(\Omega(\alpha) \backslash G_{m}(\alpha)\right) \cap \Omega_{h_{j}}} \leq$
$h_{j} \rightarrow 0^{+}$

$$
\begin{aligned}
\leq & \limsup _{h_{j} \rightarrow 0^{+}}\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i}\right)\right)_{0,\left(\Omega(\alpha) \backslash G_{m}(\alpha)\right) \cap \Omega_{h_{j}}} \\
& +{\lim \sup _{h_{j} \rightarrow 0^{+}}}\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{w}_{i}\right)\right)_{0,\left(\Omega(\alpha) \backslash G_{m}(\alpha)\right) \cap \Omega_{h_{j}}} \\
\leq & C\left\|\mathbf{w}_{i}\right\|_{1, \Omega(\alpha) \backslash G_{m}(\alpha)}
\end{aligned}
$$

where $C>0$ doesn't depend on m.
From this, (3.8) and (3.9) it follows

$$
\begin{align*}
& \limsup _{h_{j} \rightarrow 0^{+}}\left(\tau\left(\mathbf{u}_{h_{j}}\right), \varepsilon\left(\mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)\right)_{0, \Omega_{h_{j}}} \leq \tag{3.10}\\
& \quad \leq\left(\tau(\mathbf{u}), \varepsilon\left(\mathbf{w}_{i}-\mathbf{u}\right)\right)_{0, G_{m}(\alpha)}+C\left\|\mathbf{w}_{i}\right\|_{1, \Omega(\alpha) \backslash G_{m}(\alpha)}
\end{align*}
$$

Analogously

$$
\begin{aligned}
\left(\mathbf{F}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, \Omega_{h_{j}}} & =\left(\mathbf{F}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, G_{m}(\alpha)}+ \\
& +\left(\mathbf{F}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, \Omega_{h_{j}} \backslash \Omega(\alpha)}+\left(\mathbf{F}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0,\left(\Omega(\alpha) \backslash G_{m}(\alpha)\right) \cap \Omega_{h_{j}}}
\end{aligned}
$$

Hence
(3.11) $\lim \inf \left(\mathbf{F}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, \Omega_{h_{j}}} \geq\left(\mathbf{F}, \mathbf{w}_{i}-\mathbf{u}\right)_{0, G_{m}(\alpha)}-$

$$
h_{j} \rightarrow 0^{+}
$$

$$
-C\left\{\|\mathbf{F}\|_{0, \Omega(\alpha) \backslash G_{m}(\alpha)}+\left\|\mathbf{w}_{i}\right\|_{0, \Omega(\alpha) \backslash G_{m}(\alpha)}\right\}
$$

where $C>0$ doesn't depend on m. Finally

$$
\left(\mathbf{P}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, \Gamma_{P}}=\left(\mathbf{P}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, \Gamma_{P} \backslash M_{m}}+\left(\mathbf{P}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, M_{m}}
$$

where

$$
\begin{aligned}
M_{m}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{2} \left\lvert\, x_{2} \in\left(\alpha(a), \alpha(a)+\frac{1}{m}\right)\right.\right. & \text { or } \\
& \left.x_{2} \in\left(\alpha(b), \alpha(b)+\frac{1}{m}\right)\right\}
\end{aligned}
$$

(this consideration can be omitted if dist $\left.\left(\Gamma_{P}, \Gamma_{C}(\alpha)\right)>0\right)$. Then

$$
\liminf _{h_{j} \rightarrow 0^{+}}\left(\mathbf{P}, \mathbf{w}_{i h_{j}}-\mathbf{u}_{h_{j}}\right)_{0, \Gamma_{P}} \geq\left(\mathbf{P}, \mathbf{w}_{i}-\mathbf{u}\right)_{0, \Gamma_{P} \backslash M_{m}}-C\left(\|\mathbf{P}\|_{0, M_{m}}+\left\|\mathbf{w}_{i}\right\|_{0, M_{m}}\right)
$$

with a constant C, which doesn't depend on m. Here we use the fact that the norm of the trace mapping $\gamma: H^{1}\left(\Omega_{h_{j}}\right) \rightarrow L^{2}\left(\partial \Omega_{h_{j}} \backslash \Gamma_{C}\left(\alpha_{h}\right)\right)$ can be estimated independently on h_{j}. From this, (3.10) and (3.11) we see that

$$
\begin{aligned}
\left(\tau(\mathbf{u}), \varepsilon\left(\mathbf{w}_{i}\right.\right. & -\mathbf{u}))_{0, G_{m}(\alpha)}+C\left\|\mathbf{w}_{i}\right\|_{1, \Omega(\alpha) \backslash G_{m}(\alpha)} \geqslant\left(\mathbf{F}, \mathbf{w}_{i}-\mathbf{u}\right)_{0, G_{m}(\alpha)}+ \\
& +\left(\mathbf{P}, \mathbf{w}_{i}-\mathbf{u}\right)_{0, \Gamma_{P} \backslash M_{m}}-C\left\{\|\mathbf{F}\|_{0, \Omega(\alpha) \backslash G_{\mathrm{m}}(\alpha)}+\left\|\mathbf{w}_{i}\right\|_{0, \Omega(\alpha) \backslash G_{m}(\alpha)}\right\} \\
& -C\left\{\|\mathbf{P}\|_{0, M_{m}}+\left\|\mathbf{w}_{i}\right\|_{0, M_{m}}\right\} .
\end{aligned}
$$

Passing to the limit with $m \rightarrow \infty$ we are led to

$$
\left(\tau(\mathbf{u}), \varepsilon\left(\mathbf{w}_{i}-\mathbf{u}\right)\right)_{0, \Omega(\alpha)} \geqslant\left\langle L, \mathbf{w}_{i}-\mathbf{u}\right\rangle_{\alpha} .
$$

Finally, letting $i \rightarrow \infty$ we obtain

$$
(\tau(\mathbf{u}), \varepsilon(\mathbf{w}-\mathbf{u}))_{0, \Omega(\alpha)} \geqslant\langle L, \mathbf{w}-\mathbf{u}\rangle_{\alpha} \quad \forall \mathbf{w} \in K(\alpha)
$$

i.e. u solves $\mathscr{P}(\alpha)$.

The main result of this Section is
THEOREM 3.1: Let $\alpha_{h}^{*} \in \mathscr{U}_{\text {ad }}^{h}$ be a solution of $(\mathbf{P})_{h}$ and let $\mathbf{u}_{h}\left(\alpha_{h}^{*}\right)$ be the corresponding solution of the state problem $\left(\mathscr{P}\left(\alpha_{h}^{*}\right)\right)_{h}$. Then there exist a subsequence $\left\{\alpha_{h_{j}}^{*}\right\}$ of $\left\{\alpha_{h}^{*}\right\}$, an element $\alpha^{*} \in \mathscr{U}_{\text {ad }}$ and $\mathbf{u}\left(\alpha^{*}\right) \in K\left(\alpha^{*}\right)$ such that

$$
\begin{gather*}
\alpha_{h_{j}}^{*} \Rightarrow \alpha^{*} \quad \text { in }[a, b], \tag{3.12}\\
\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)-\mathbf{u}\left(\alpha^{*}\right) \text { in }\left(H^{1}\left(G_{m}\left(\alpha^{*}\right)\right)\right)^{2}, \quad j \rightarrow \infty, \tag{3.13}
\end{gather*}
$$

for any m integer. Moreover α^{*} is a solution of (\mathbf{P}) and $\mathbf{u}\left(\alpha^{*}\right)$ is the corresponding state on $\Omega\left(\alpha^{*}\right)$.

Proof: As $\mathscr{U}_{a d}^{h} \subset \mathscr{U}_{a d}$ for all h and $\mathscr{U}_{a d}$ is compact in $C^{0}([a, b])-$ vol. $21, n^{\circ} 2,1987$
topology, there exist a subsequence of $\left\{\alpha_{h}^{*}\right\}$ (denoted by $\left\{\alpha_{h}^{*}\right\}$ again) and $\alpha^{*} \in \mathscr{U}_{a d}$ such that

$$
\begin{equation*}
\alpha_{h}^{*} \Rightarrow \alpha \quad \text { in }[a, b], \quad h \rightarrow 0 . \tag{3.14}
\end{equation*}
$$

Accordingly to Lemma 3.2, a subsequence $\left\{\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right\}$ of $\left\{\mathbf{u}_{h}\left(\alpha_{h}^{*}\right)\right\}$ and an element $\mathbf{u}\left(\alpha^{*}\right) \in K\left(\alpha^{*}\right)$ exist and

$$
\begin{equation*}
\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)-\mathbf{u}\left(\alpha^{*}\right) \text { in }\left(H^{1}\left(G_{m}\left(\alpha^{*}\right)\right)\right)^{2} \tag{3.15}
\end{equation*}
$$

for any m. Moreover, $\mathbf{u}\left(\alpha^{*}\right)$ solves $\left(\mathscr{P}\left(\alpha^{*}\right)\right)$.
To complete the proof of Theorem 3.1 it remains to show that α^{*} is a minimizer of E over $\mathscr{U}_{a d}$. One can write

$$
E_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)=E_{h_{j}, G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right)+E_{h_{j}, \Omega_{h_{j}} \backslash G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right),
$$

provided h_{j} is sufficiently small, where

$$
\begin{aligned}
& E_{h_{j}, G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right)=\frac{1}{2}\left(\tau\left(\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right),\right.\left.\varepsilon\left(\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right)\right)_{0, G_{m}\left(\alpha^{*}\right)}- \\
& \quad-\left(\mathbf{F}, \mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right)_{0, G_{m}\left(\alpha^{*}\right)}-\left(\mathbf{P}, \mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right)_{0, \Gamma_{P} \backslash M_{m}}, \\
& E_{h_{j}, \Omega_{h_{j}} \backslash G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right)=\frac{1}{2}\left(\tau\left(\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right), \varepsilon\left(\mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right)\right)_{0, \Omega_{h_{j}} \backslash G_{m}\left(\alpha^{*}\right)}- \\
& \quad\left(\mathbf{F}, \mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right)_{0, \Omega_{h_{j}} \backslash G_{m}\left(\alpha^{*}\right)}-\left(\mathbf{P}, \mathbf{u}_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\right)_{0, M_{m}} .
\end{aligned}
$$

Let m, be fixed and $h_{j} \rightarrow 0^{+}$. Then

$$
\varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}}\left(\alpha_{h_{j}}^{*}\right)\left(\alpha_{h_{j}}^{*}\right) \geqslant \varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}, G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right)+\varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}, \Omega_{h_{j}} \backslash G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right)
$$

As (3.14) and (3.15) hold, we have

$$
\begin{aligned}
\varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}, G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right) & \geqslant \frac{1}{2}\left(\tau\left(\mathbf{u}\left(\alpha^{*}\right)\right), \varepsilon\left(\mathbf{u}\left(\alpha^{*}\right)\right)\right)_{0, G_{m}\left(\alpha^{*}\right)}- \\
& -\left(\mathbf{F}, \mathbf{u}\left(\alpha^{*}\right)\right)_{0, G_{m}\left(\alpha^{*}\right)}-\left(\mathbf{P}, \mathbf{u}\left(\alpha^{*}\right)\right)_{0, \Gamma_{P} \backslash M_{m}} \equiv E_{G_{m}\left(\alpha^{*}\right)}\left(\alpha^{*}\right)
\end{aligned}
$$

and

$$
\varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}, \Omega_{h_{j}} \backslash G_{m}\left(\alpha^{*}\right)}\left(\alpha_{h_{j}}^{*}\right) \geqslant-c\left(\|\mathbf{F}\|_{0, \Omega\left(\alpha^{*}\right) \backslash G_{m}\left(\alpha^{*}\right)}+\|\mathbf{P}\|_{0, M_{m}}\right)
$$

with a constant c, which doesn't depend on m. Passing to the limit with $m \rightarrow \infty$ we see that

$$
\begin{equation*}
\varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}}\left(\alpha_{h_{j}}^{*}\right) \geqslant E\left(\alpha^{*}\right) \tag{3.16}
\end{equation*}
$$

M^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

Let $\hat{\alpha} \in \mathscr{U}_{a d}$ be an arbitrary and let $\hat{\alpha}_{h} \in \mathscr{U}_{a d}^{h}$ be a sequence such that

$$
\begin{equation*}
\hat{\alpha}_{h} \Rightarrow \hat{\alpha} \quad \text { in } \quad[a, b], \quad h \rightarrow 0^{+} . \tag{3.17}
\end{equation*}
$$

The existence of such a sequence has been proved in [2]. Let $\mathbf{u}(\hat{\alpha}) \in K(\hat{\alpha})$, $\mathbf{u}_{h}\left(\hat{\alpha}_{h}\right) \in K_{h}\left(\hat{\alpha}_{h}\right)$ denote solutions of $(\mathscr{P}(\hat{\alpha})),\left(\mathscr{P}\left(\hat{\alpha}_{h}\right)\right)_{h}$, respectively. If $h_{j} \rightarrow 0^{+}$denote a filter of indices, for which (3.16) is true, then

$$
\begin{equation*}
\varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}}\left(\alpha_{h_{j}}^{*}\right) \leqslant \varliminf_{h_{j} \rightarrow 0^{+}} E_{h_{j}}\left(\hat{\alpha}_{h_{j}}\right), \tag{3.18}
\end{equation*}
$$

as follows from the definition of $(\mathbf{P})_{h}$. As $\mathbf{u}(\hat{\alpha}) \in K(\hat{\alpha})$, there exists a subsequence of $\left\{h_{j}\right\}$ (which will be denoted by $\left\{h_{j}\right\}$ as well) and elements $\hat{\mathbf{v}}_{h_{j}} \in K_{h_{j}}\left(\hat{\alpha}_{h_{j}}\right)$ such that

$$
\begin{equation*}
\left\|\hat{\mathbf{v}}_{h_{j}}-\tilde{\mathbf{u}}(\hat{\alpha})\right\|_{1, \Omega_{h_{j}}\left(\hat{\alpha}_{h_{j}}\right)} \rightarrow 0, \quad h_{j} \rightarrow 0^{+} \tag{3.19}
\end{equation*}
$$

where $\tilde{\mathbf{u}}(\hat{\alpha})$ denotes the Calderon extension of $\mathbf{u}(\hat{\alpha})$ from $\Omega(\hat{\alpha})$ on $\hat{\boldsymbol{\Omega}}$ (see the proof of Lemma 3.2, especially the construction of functions $\left.\mathbf{w}_{i h_{j}}\right)$. An equivalent form of $\left(\mathscr{P}\left(\hat{\alpha}_{h_{j}}\right)\right)_{h_{j}}$ says that

$$
\begin{equation*}
E_{h_{j}}\left(\hat{\alpha}_{h_{j}}\right) \leqslant J_{\hat{\alpha}_{h_{j}}}\left(\mathbf{v}_{h_{j}}\right), \quad \forall \mathbf{v}_{h_{j}} \in K_{h_{j}}\left(\hat{\alpha}_{h_{j}}\right), \tag{3.20}
\end{equation*}
$$

where $J_{\hat{\alpha}_{h_{j}}}\left(v_{h_{j}}\right)$ denotes the value of the total potential energy functional at $\mathbf{v}_{h_{j}}$, calculated over $\Omega_{h_{j}}\left(\hat{\alpha}_{h_{j}}\right)$, i.e.

$$
J_{\hat{\alpha}_{h}}(\mathbf{v})=\frac{1}{2}(\tau(\mathbf{v}), \varepsilon(\mathbf{v}))_{0, \Omega_{h}\left(\hat{\alpha}_{h}\right)}-\langle L, \mathbf{v}\rangle_{\hat{\alpha}_{h}} .
$$

As a consequence of (3.17) and (3.19) we have

$$
\varliminf_{h_{j} \rightarrow 0^{+}} J_{\hat{\alpha}_{h_{j}}}\left(\mathbf{v}_{h_{j}}\right)=J_{\hat{\alpha}}(\mathbf{u}(\hat{\alpha}))=E(\hat{\alpha}) .
$$

Comparing this with (3.16), (3.19) and (3.20) we see that

$$
E\left(\alpha^{*}\right) \leqslant E(\hat{\alpha}) \quad \forall \hat{\alpha} \in \mathscr{U}_{a d} .
$$

4. NUMERICAL REALIZATION

Let us write $\bar{\Omega}_{h}\left(\alpha_{h}\right)=\bar{\Omega}^{\prime} \cup \overline{\Omega_{h}^{r}\left(\alpha_{h}\right)}$, where $\hat{\Omega}^{\prime}=(a, b) \times\left(C_{0}^{\prime}, \gamma\right)$ with $C_{0}^{\prime}>C_{0}$, is a part of $\Omega_{h}\left(\alpha_{h}\right)$, where the contact part $\Gamma_{C}\left(\alpha_{h}\right), \alpha_{h} \in \mathscr{U}_{a d}^{h}$ cannot penetrate (see Fig. 4.1).
vol. $21, \mathrm{n}^{\circ} 2,1987$

Figure 4.1.

Let \hat{J}_{h} and $J_{h}^{r}\left(\alpha_{h}\right)$, resp. be a triangulation of $\bar{\Omega}^{\prime}$ and $\bar{\Omega}_{h}^{r}\left(\alpha_{h}\right)$, resp. $J_{h}^{r}\left(\alpha_{h}\right)$ will be constructed partially by means of principle moving points

$$
\begin{align*}
& A_{i}=\left(a_{i}, x_{2}^{i}\right), \quad a_{i}=a+i h, \quad h=\frac{b-a}{N}, \quad x_{2}^{i}=\alpha_{h}\left(a_{i}\right) \tag{4.1}\\
& i=0, \ldots, N
\end{align*}
$$

partially by means of associated moving points

$$
A_{i}^{j}=\left(a_{i}, \varphi_{i}^{j}\left(x_{2}^{i}\right)\right)
$$

and fixed points

$$
\hat{A}_{i}=\left(a_{i}, C_{0}^{\prime}\right) \quad \text { (see Fig. 4.2). }
$$

We see that the principle and associated moving points are allowed to move in x_{2}-direction only. The x_{2}-coordinate of associated moving points

Figure 4.2.
M^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis
A_{i}^{j} will be derived from that of A_{i} by means of a function φ_{i}^{j}. Our choice is linear, i.e.

$$
\begin{equation*}
\varphi_{i}^{j}=C_{0}^{\prime}+\frac{x_{2}^{i}-C_{0}^{\prime}}{M} j, \quad M \text { integer }, j=0, \ldots, M . \tag{4.2}
\end{equation*}
$$

Triangulation \hat{j}_{h} of the fixed part $\bar{\Omega}^{\prime}$ will be the same for all $\alpha_{h} \in \mathscr{U}_{a d}^{h}$. Consequently, any triangulation of $\Omega_{h}\left(\alpha_{h}\right)$ is uniquely determined by ($N+1$) x_{2}-coordinates of principle moving points A_{i}. Let us denote

$$
X \equiv\left(x_{2}^{0}, x_{2}^{1}, \ldots, x_{2}^{N}\right) \equiv\left(\alpha_{h}\left(a_{0}\right), \alpha_{h}\left(a_{1}\right), \ldots, \alpha_{h}\left(a_{N}\right)\right)
$$

and $\Omega(X) \equiv \Omega_{h}\left(\alpha_{h}\right), \mathbf{u}_{h}(X) \equiv \mathbf{u}\left(\alpha_{h}\right), \alpha_{h} \in \mathscr{U}_{a d}^{h}, \Gamma_{C}(X) \equiv \Gamma_{C}\left(\alpha_{h}\right)$.
For fixed $\Omega(X), \mathbf{u}_{h}(X)$ is given by nodal displacement vector $Q(X) \in \mathscr{K}(X)$, which is the solution of the problem :

$$
\begin{equation*}
\mathcal{F}(Q(X)) \leq \mathcal{F}(Q) \quad \forall Q \in \mathscr{K}(X), \tag{4.3}
\end{equation*}
$$

where

$$
\mathcal{F}(Q)=\frac{1}{2} Q^{T} A(X) Q-\mathscr{F}^{T}(X) Q-\mathscr{P}^{T}(X) Q
$$

and

$$
\mathscr{K}(X)=\left\{Q \in \mathbb{R}^{n} \mid Q_{j_{i}} \geq-\alpha_{h}\left(a_{i}\right) \quad \forall j_{i} \in I\right\} .
$$

$A(X)$ is the stiffness matrix of our problem, $\mathscr{F}(X), \mathscr{P}(X)$ is the vector arising from the discretization of the body force \mathbf{F} and the surface traction \mathbf{P}, respectively. Dependence of A, \mathscr{F} and \mathscr{P} on design variables X is emphasized by writing X as a argument. I is the set, containing all indices of x_{2}-components of the nodal displacement field at $A_{i}, i=0, \ldots, N$. The state problem (4.3) can be solved by different iterative methods (SOR with projection, conjugate gradients with preconditioning, multigrid method). For comparison of these methods for solving (4.3) see [19].
Consequently, the problem $(\mathbf{P})_{h}$ expressed in algebraic form is equivalent to

$$
(\mathbf{P}(X)) \min _{X \in \mathscr{D}} E(Q(X), X),
$$

where $Q(X)$ solves (4.3) and \mathscr{D} denotes the set of admissible design nodes given by

$$
\begin{align*}
& \mathscr{V}=\left\{X \in \mathbb{R}^{N+1} ; 0 \leq x_{2}^{i} \leq C_{0} \quad \forall i=0, \ldots, N ;\right. \tag{4.4}\\
& \left.-\frac{C_{1}}{N} \leq x_{2}^{i}-x_{2}^{i-1} \leq \frac{C_{1}}{N} \quad i=1, \ldots, N ; \quad \sum_{i=1}^{N}\left(\gamma-\frac{x_{2}^{i-1}+x_{2}^{i}}{2} h=C_{2}\right)\right\}
\end{align*}
$$

vol. $21, \mathrm{n}^{\circ} 2,1987$
and

$$
\begin{aligned}
& E(X) \equiv E(Q(X), X)=\frac{1}{2}(Q(X), A(X) Q(X))- \\
&-(\mathscr{F}(X), Q(X))-(\mathscr{P}(X), Q(X)) .
\end{aligned}
$$

Let $X \in \mathscr{D}$ and $V \in \mathbb{R}^{N+1}$ be given. We denote by

$$
\begin{aligned}
& A^{\prime}(X) \equiv A^{\prime}(X) V=\lim _{t \rightarrow 0^{+}} \frac{A(X+t V)-A(X)}{t} \\
& \mathscr{F}^{\prime}(X) \equiv \mathscr{F}^{\prime}(X) V=\lim _{t \rightarrow 0^{+}} \frac{\mathscr{P}(X+t V)-\mathscr{F}(X)}{t} \\
& \mathscr{P}^{\prime}(X) \equiv \mathscr{P}^{\prime}(X) V=\lim _{t \rightarrow 0^{+}} \frac{\mathscr{P}(X+t V)-\mathscr{P}(X)}{t}
\end{aligned}
$$

the directional derivatives of $A, \mathscr{F}, \mathscr{P}$ at point X in the direction V. It is easy to see that the mappings $X \rightarrow A(X), \mathscr{F}(X), \mathscr{P}(X)$ are even continuously differentiable. On the other hand, the mapping $X \rightarrow Q(X)$ is only directionally differentiable but not continuously differentiable (cf. examples in $[14,17,18,20,21])$. Consequently, the mapping $X \rightarrow E(X)$ is not, in general, of the class C^{1}. Next we show however that our concrete choice of E leads to a differentiable case. Indeed, let $E^{\prime}(X) V$ denote the directional derivative of E at X in the direction V.

Then

$$
\begin{align*}
E^{\prime}(X) V= & \left(Q^{\prime}(X), A(X) Q(X)-\mathscr{F}(X)-\mathscr{P}(X)\right) \tag{4.5}\\
& -\left(\mathscr{P}^{\prime}(X), Q(X)\right)-\left(\mathscr{F}^{\prime}(X), Q(X)\right) \\
& +\frac{1}{2}\left(Q(X), A^{\prime}(X) Q(X)\right) .
\end{align*}
$$

We shall eliminate Q^{\prime} from (4.5). Components $T_{i}, i \in I$ of the residual vector

$$
\begin{equation*}
T(X) \equiv A(X) Q(X)-\mathscr{F}(X)-\mathscr{P}(X) \tag{4.6}
\end{equation*}
$$

are discrete analogues of the normal stresses on $\Gamma_{C}(\alpha)$. If $T_{j}(X) \neq 0$ for some $j=0, \ldots, N$, then $T_{j}(X+t V) \neq 0$ for any $t>0$ sufficiently small. This means that the corresponding node on $\Gamma_{C}(X)$ remains in contact regardless small perturbations of $\Omega(X)$:

$$
Q_{j}(X+t V)=-x \dot{j}-t V_{j} .
$$

Consequently,

$$
\begin{equation*}
\frac{\partial Q_{j}}{\partial x_{i}}=-\delta_{i j} \tag{4.7}
\end{equation*}
$$

(instead of x_{2}^{j} we write simply x_{j}). Now (4.6) and (4.7) yield :

$$
\begin{align*}
\frac{\partial}{\partial x_{i}} & E(Q(X), X)=-T_{i}-\left(\frac{\partial}{\partial x_{i}} \mathscr{F}(X), Q(X)\right)- \tag{4.8}\\
& -\left(\frac{\partial}{\partial x_{i}} \mathscr{P}(X), Q(X)\right)+\frac{1}{2}\left(Q(X),\left(\frac{\partial}{\partial x_{i}} A(X)\right) Q(X)\right) .
\end{align*}
$$

Let us repeat that (4.8) holds because of the special form of the cost functional (see also [4]).
Hence ($\mathbf{P}(X)$) represents a non-convex but smooth minimization problem for variables, subject to box constraints, to linear inequality constraints and to one linear equality constraint. One possible approach to solve (\mathbf{P}) is to use the following steepest descent type algorithm :

Algorithm 4.1

STEP 0 Give some feasible initial guess $X^{(0)} \in \mathscr{D}$. Set $k=0$.
STEP 1 Compute the state $Q\left(X^{(k)}\right)$ from (4.3).
STEP 2 Compute $E\left(Q\left(X^{(k)}\right), X^{(k)}\right)$ and

$$
G^{(k)}=\nabla_{x} E\left(Q\left(X^{(k)}\right), X^{(k)}\right) .
$$

STEP 3 Find a feasible direction of descent (for example the projection of $-G^{(k)}$ on the set $\left.\mathscr{D}\right)$.
STEP 4 Find $X^{(k+1)} \in \mathscr{D}$ such that

$$
E\left(Q\left(X^{(k+1)}\right), X^{(k+1)}\right)<E\left(Q\left(X^{(k)}\right), X^{(k)}\right)
$$

Perform the terminal check. If necessary, set $k:=k+1$ and go to STEP 1.
Now we give some remarks concerning the algorithm 4.1. The number of iterations depends on the choice of the optimization procedure in STEP 4. When the state problem (4.3) is solved iteratively (by SOR method for example) a reasonable initial guess $Q^{0}\left(X^{(k)}\right)$ is the solution $Q\left(X^{(k-1)}\right)$ attained in the previous step. Namely, when the domain $\Omega\left(X^{(k-1)}\right)$ is replaced by a new domain $\Omega\left(X^{(k)}\right)$, the corresponding change in the solution of the state problem will probably be small.

When choosing the gradient method in steps 3 and 4 of our algorithm, the following features of the problem have to be taken into account :
i) the evaluation of the cost function and its gradient are time consuming ;
ii) E is of the class C^{1};
iii) constraints are linear, containing box constraints, inequality constraints and one equality constraint ;
iv) function $X \rightarrow E(X)$ is not convex. Consequently, a stationary point in the above algorithm may give only a local minimum. Hence, the initial guess plays an important role in the minimization procedure.

```
vol. 21, n ` 2, 1987
```


5. NUMERICAL EXAMPLES

In numerical tests we suppose that the elastic body consists of homogeneous and isotropic material with the Poisson ratio $v=0.29$ and the Young modulus

$$
E=2.15 \cdot 10^{11} \mathrm{Nm}^{-2}
$$

Example 5.1: We have chosen in the Definition (2.1) of $\mathscr{U}_{a d}$ the parameters as follows : $a=0, b=4, C_{0}=0.05, \gamma=1, C_{1}=0.025$ and $C_{2}=3.91$. Let

$$
\begin{gathered}
\Gamma_{C}\left(\alpha^{0}\right)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid\left(x_{1}-4\right)^{2}+\left(x_{2}-R_{1}\right)^{2}=R_{1}^{2}, 0 \leq x_{1} \leq 4\right\} \\
\Gamma_{D}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}=0,0 \leq x_{2} \leq 1\right\}
\end{gathered}
$$

where $R_{1}=160.025$, see Figure 5.1.

Figure 5.1. $-\Omega\left(\alpha^{0}\right)$ and partition of $\partial \Omega\left(\alpha^{0}\right)$.

We suppose that $\mathbf{F} \equiv 0, u_{1}=0$ and $T_{2}=0$ on Γ_{P}^{2} and on $\Gamma_{P}^{1} \mathbf{P}=\left(0, P_{2}\right)$ where $P_{2}=-5.75 .10^{8}$ if $x_{1} \in(2,4)$ and 0 elsewhere.

In Figure $5.2 a$ we see the triangulation of $\Omega\left(\alpha^{0}\right)$. It consists of 128 triangles. Consequently, on $\Gamma_{C}\left(\alpha^{0}\right)$ we have 17 nodes, i.e. we have 17 degrees of freedom in minimization. The state problem is solved by a variant of conjugate gradient method (CG-SSOR with projection, [19]). For the minimization of E the NPSOL routine of SOL (System Optimization Laboratory, [5]) was applied. It is based on augmented Lagrangian method together with linearization of constraints. The gradient, necessary for the method, is computed by the formula (4.8). The computations have been carried out by VAX $11 / 780$ with FPA in single precision. The authors are

[^2]indebted to A. Kaarna and T. Tiihonen for their assistance in numerical tests.

In Figure 5.2 we see the results :
a) triangulation of the initial domain $\Omega\left(\alpha^{0}\right)$,
b) $\Omega\left(\alpha^{0}\right)$ after deformation,
c) scaled displacement field (u_{1}, u_{2}) at nodal points,
d) diminution of E_{h} versus iteration,
e) triangulation of final $\Omega\left(\alpha^{10}\right)$,
f) $\Omega\left(\alpha^{10}\right)$ after deformation,
g) scaled displacement field (u_{1}, u_{2}) at nodal points,
$h)$ value of normal components of the stress vector \rightarrow for the initial shape, $\leftrightarrows \leftarrow$ for the final shape.

Example 5.2: As in Example 5.1, but

$$
\Gamma_{C}\left(\alpha^{0}\right)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}=0.05 . x_{1}, 0 \leq x_{1} \leq 4\right\},
$$

see Figure 5.3.
The solution strategy (triangulations, algorithms, gradients etc.) is the same as in Example 5.1. In Figure 5.4 we see the analogous results to Figure 5.2.

In both test examples the value of the cost functional is reduced roughly speaking to the same value. The initial shape in Examples 5.1 and 5.2 are much different but the Algorithm gives in both cases the same final shape. As a by product we could find for $\Gamma_{C}(\alpha)$ such a shape that the contact part is enlarged and moreover the contact stress will be evenly distributed. This is of a great practical importance for designers. From the mathematical point of view the functional E is easy to handle whereas the direct minimization of the contact stress is more involved.

More many-sided collection of numerical tests together with the case with a given friction will be presented in a forthcoming paper.

Figure 5.3. $-\Omega\left(\boldsymbol{\alpha}^{0}\right)$ and partition of $\partial \Omega\left(\boldsymbol{\alpha}^{0}\right)$.
vol. $21, \mathrm{n}^{\circ} 2,1987$

Figure 5.2. - Numerical results for Example 5.1.
M^{2} AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis

Figure 5.2 continued
vol. 21, n ${ }^{\circ} 2,1987$

(a)

(c)

Figure 5.4. - Numerical results for Example 5.2.
\mathbf{M}^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

Figure 5.4 continued
vol. $21, \mathrm{n}^{\circ} 2,1987$

REFERENCES

[1] E. Atrek, R. H. Gallagher, K. M. Ragsdell and O. C. Zienkiewicz (eds.), New Directions in Optimum Structural Design, John Wiley and Sons, Chichester, 1984.
[2] D. Begis and R. Glowinski, Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal, Appl. Math. Optim., 2 (1975) pp. 130-169.
[3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, AmsterdamNew York-Oxford, North Holland, 1978.
[4] R. Correa and A. Seeger, Directional derivatives in minimax problems, Numer. Funct. Anal. and Optimiz. 7 (1984) pp. 145-156.
[5] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, London, 1981.
[6] J. Haslinger, V. Horak and P. Neittanamäki, Shape optimization in contact problem with friction 8 (1985/86), pp. 557-587.
[7] J. Haslinger and P. Neittananäki, Penalty method in design of system governed by mixed Dirichlet-Signorini boundary value problem, Ann. Fac. Sci. Toulouse, Vol. V (1983) pp. 199-216.
[8] J. Haslinger and P. Neittannmäki, On optimal shape design of systems governed by mixed Dirichlet-Signorini boundary value problem, Math. Meth. Appl. Sci. 8 (1985) pp. 157-181.
[9] J. Haslingek and P. Neittaainmäki, On the existence of optimal shapes in contact problems, Numer. Funct. Anal. and Optimiz., 7 (1984) pp. 107-124.
[10] J. Haslinger, P. Neittaanmäki and T. Tiihonen, Shape optimization of an elastic body in contact based on penalization of the state, Apl. Mat., 31 (1986), pp. 54-77.
[11] E. J. Haug and J. Cea (eds.), Optimization of Distributed Parameter Structures. Nato Advanced Study Institutes Series, Series E, Alphen aan den Rijn : Sijthoff and Noordhoff, 1981.
[12] I. Hlavacek, J. Haslinger, J. Necas and J. Lovisek, Numerical Solution of Variational Inequalities (in Slovak), ALFA, SNTL, 1982 English Translation (to appear).
[13] V. Komкov (ed.), Sensitivity of Functionals with Applications to Engineering Sciences, Lecture Notes in Mathematics 1086, Springer-Verlag, Berlin, 1984.
[14] P. Neittannmäki and T. Tilhonen, Sensitivity analysis for a class of optimal shape design problems, University of Jyväskylä, Department of Mathematics, Report 29, 1985.
[15] J. A. Nitsche, On Korn's second inequality, R.A.I.R.O., Analyse numérique, 15 (1981) pp. 237-248.
[16] O. Pironneau, Optimal Shape Design For Elliptic Systems, Springer Series in Comput. Physics, Springer-Verlag, New York, 1984.
[17] J. Sokolowski, Sensitivity analysis for a class of variational inequalities, in [11] pp. 1600-1609.
[18] J. Sokolowski and J. P. Zolesio, Shape sensitivity analysis for variational inequalities, Proceedings of 10th IFIP Conference, pp. 399-407, LN in Control and Information Sciences 38, Springer-Verlag, Berlin, 1982.
[19] T. Tilhonen, Some remarks on solving numerically contact problems in elasticity, in Proc of the Summer School in Numerical Analysis at Jyväskylä (ed. P. Neittaanmäki), pp. 309-317, University of Jyväskylä, Dept. Math., Report 31, 1985.
[20] J. P. Zolesio, The Material derivative (or speed) method for shape optimization, in [9] pp. 1089-1151.
[21] J. P. Zolesio, Shape controlability for free boundaries, in Proc. of 11th IFIP Conference on System Modelling and Control Theory (ed. P. Thoft-Christensen), LN in Control and Information Sciences 59, Springer-Verlag, Berlin, 1984.

[^0]: (*) Received in September 1985.
 ${ }^{1}$) Charles University, Faculty of Mathematics and Physics, KFK MFF UK, Malostranské $2 / 25$ CS, 11800 Prague, Czechoslovakia.
 $\left(^{2}\right)$ University of Jyväskylä, Department of Mathematics, Seminaarinkatu 15, SF-40100 Jyväskylä, Finland.

[^1]: M^{2} AN Modélisation mathématique et Analyse numériquc 0399-0516/87/02/269/24/\$4.40
 Mathematical Modelling and Numerical Analysis © AFCET Gauthiers-Villars

[^2]: \mathbf{M}^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

