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(Vol. 21, n° 2, 1987, p. 327-352)

SUPERCONVERGENCE OF MIXED FINITE ELEMENT METHODS
FOR PARABOLIC EQUATIONS (*)

by Maria Cristina J. SOUEFF (*)

Communicated by J. DOUGLAS

Abstract. — An asymptotic expansion of the mixed finite element solution of a linear parabolic
problem is used to dérive superconvergence results. Optimal order error estimâtes in Sobolev
spaces of négative index are also shown.

Résumé. — Un développement asymptotique de la solution par élément fini mixte d'un
problème parabolique linéaire est utilisé pour obtenir des résultats de superconvergence. On
obtient aussi des estimations d'erreur d'ordre optimal dans les espaces de Sobolev d'exposant
négatif

1. INTRODUCTION

Let ü b e a bounded domain in R2 with smooth boundary dft. Consider
the linear parabolic problem

(a) d^-~V.{aVp + bp) + cp = ƒ , x e a, t e J ,
ot

(1.1) {b) p = g, xedtl,teJ9

(c) p=p0, xe(l,T=Q,

where J = (0,T), and a,b,c are smooth fonctions of x alone such that a and
d are bounded below by a positive constant. Assume that the elliptic part of
the operator is invertible.

Dénote by (,) the natural inner product in L2(Ci) or L2(H)2
? and by

<>> the one in L2(d£l). Let

V =

with the norm

(*) Received in March 1986.
C) Üniversity of Chicago, Chicago, IL 60637, U.S.A.
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328 M-C. J. SQUEFF

and W = L2(fl). Form the parabolic mixed method as follows. Set

u = - (aVp + bp) .

Then, if a = a~l and (3 = a~lb, intégration by parts in the relation

(au + Vp + Pp, v ) = 0 , u e V ,

gives

(1.2) (aw, v) - (div v,p) + (pp, i;) - - <g, i;. v> , v e V ,

where v dénotes the unit outward normal vector to 5H. The partial
differential équation is represented by the weak form

(1.3) (d^-,w) + (div u,w)+ (cp,w)= ( / , w ) , W G W .

In order to define the mixed finite element method for (1.1) let
Vh x Wh dénote the Raviart-Thomas-Nedelec space [11, 12, 14] of index
k 5* 0 associated with a quasi-regular partition 3ft of O that is such that

i) if T e3h, T is either a triangle or a rectangle,
ii) if r<=a , T has straight edges,
iii) if T is a boundary triangle or rectangle, the boundary edge can be

curved,
iv) ail vertex angles are bounded below by a positive constant,
v) diam (T) = hT, max hT = h,

T

vi) rectangles : ratio of edges bounded.
The définition of Vh x Wh is as follows. Let Pk(T) dénote the restriction

of the polynomials of total degree k to the set T and let Pkj(T) dénote the
restriction oi Pk(R) ® Pt(R) Xo T. If T is a triangle, let

V(T) =Pk(T)2®sVan(xPk(T)),
W(T) = Pk(T) ,

where x = (X1?JC2). Similarly, if T is a rectangle, let

Then, set

Vk=V(k,3h)= {vsV:v\TeV(T),Te3h} ,
\)= {weW:w\TeW(T),Te3h} .
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SUPERCONVERGENCE OF MIXED F.E.M. 329

Note that div Vh = Wh, and

Vk= \ve Y\ V(T):v\T . vt + v\T, . v, = 0 , o n f, O T}\ ,
{ Teh

 l ' J

where vl is the outer normal to 71,. The above définition of Vh x Wh

coincides with that of Raviart and Thomas [12] for rectangular éléments and
is the modification due to Nedelec [11] on triangular éléments. Next,
consider the projection

defined by Raviart and Thomas for polygonal domains [12] and which
satisfies

(a) Ph is the L2(fl)-projection ;
(b) the following diagram commutes :

v Ëiï—„H

ph

vh ^ — w h ^ o ,

Le., div Tïh - Ph div : V 2 ? Wh

(c) the following approximation properties hold :

(i) \\u->nhu\\^Q\\u\\rh
r, l ^ r ^ k + 1,

(1.4) (ü) ||div ( U - I T * K ) | L , * £ Q\\div u\\rh
r + s , 0 ^ r, s ^ k + 1 t

(iii) ||/? — P f t jp || s

Arnold-Douglas-Roberts [8] have introduced a modification on the défini-
tion of TTh in order to include boundary triangles with curved edges.

The semidiscrete mixed finite element method for (1.1) consists of finding
{uh>Ph} :J^>VhxWh such that, for t e J,

(ja) ( a u h , v ) - ( d i v v > / > f t ) + ( f i p h , v ) = - ( g , v . v ) , v e V h ,

(1.5)
dph( dph

d~df'w

It is also necessary to specify the initial value for ph (as those for
uh then follow from (1.5a)). This spécification will be done later.
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330 M.-C. J. SQUEFF

The main objective of this work is the establishment of superconvergence
of the solution of a semidiscrete mixed finite element method to the solution
of the linear parabolic problem in R2. In a single space variable, knot
superconvergence has been demonstrated for semidiscrete Galerkin ap-
proximation of solutions of linear parabolic problems by Douglas-Dupont-
Wheeler [5]. The basic tooi they have used consists of an asymptotic
expansion of the Galerkin solution by means of a séquence of elliptic
projections they have called a quasi-projection. Arnold and Douglas [1]
have carried out the results for quasilinear parabolic équations. Using a
different approach Thomée [15] has also analysed superconvergence
phenomena in Galerkin methods for parabolic problems in R". In this work.
a quasi-projection for mixed methods for linear parabolic problems is
introduced and then used to produce asymptotic expansions to high order of
the mixed method solution. Superconvergence is then derived by post-
processing.

Note that by using this post-processing procedure the number of
parameters involved in the calculation of uh and ph is much smaller than it
would be in order to obtain the same accuracy by either increasing the index
of Vh x Wh or by reducing h. Thus, the cost of obtaining a given accuracy is
much reduced by the employment of the post-processing, which is quite
inexpensive in comparison to the évaluation of uh and ph.

A brief outline of this paper is as follows. In sections 2, 3 and 4 the quasi-
projection for parabolic mixed methods for problems in IR2 with Dirichlet
boundary conditions is defincd and optimal order estimâtes in Sobolev
spaces of négative index are derived for the approximations to the solution
and its associated flow field. In sections 5 and 6, following Bramble and
Schatz [2,3], an averaging operator is introduced and estimâtes on
différence quotients of the error are derived. These estimâtes then imply the
superconvergence error estimâtes for the post-processed approximations.

2. FORMULATION OF THE MIXED METHOD QUASI-PROJECTION

Let

t)=p—ph and a = M — wA.

Then

(a) (aa, v) - (div v, {) + (PL v) = 0 , veVh,
(2.1)

(P) {dYt>w) + (div a' w> + ^ w ) = ° > w e wh-

Next5 let {üh, ph) : J -» Vh x Wh dénote the elliptic mixed method projec-
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SUPERCONVERGENCE OF MIXED F.E.M. 331

tion of the solution {u,p} into Vh x Wh : if

(2.2) T]^p-ph and £ = u - üh ,

then

() ( ) ( ) ( ) = 0, veVh,
(2.3)

(ft) (div Ç, w) + (en, w) = 0 , w € Wh .

Let 5 be a nonnegative integer and let Hs(£l) be the usual Sobolev space ;
i.e., the set of all fonctions in L2(O) whose distributional derivatives of
order not greater than s are also in L2(ft) ; Hs(ft) is normed by

where a = (al9 a2), a/ a nonnegative integer,

| a | = ax + a 2 î Da = —^

and

\z\r =
Ja

Consider also the dual space of Hs(ft), denoted by H~s(£l), normed by

The object of a quasi-projection is to produce an expansion of £ and a that
begins with the pair TJ, £ and then has terms decreasing in magnitude by a
factor of h2 until the limit of the négative norm estimâtes for the
corresponding elliptic mixed method is reached* lts construction is as
follows. First, let

'Ho =Ph-Ph and %0 = üh-uh.

Subtract (2.3) from (2.1)

(«) (a£0, v) - (div v, T\O) + O^o» v) = ° » v G Vh>
(2.4)

vol. 21, n° 2, 1987



332 M.-C. J. SQUEFF

Next, let {€1, -ni} :J->VhxWh be defined by

(ja) (a£1; v) - (div v, T^) + (fit\u v) = O, t> e VA ,

(2.5)

(è) (div €1, w) + (ct\u w) = ^ d ^ , w ^ , weWh.

Recursively define {£;-, T|;-} :J-*VhxWh by

(a) K ; , ») - (div v, r\,) + On/f p) = O , veVh,
(2.6)

(&) (div | ; , w) + (criy, w) = - (d ^ p - , w\ , weWh,

for ; = 2, 3, ... .
Let

Po=Ph> Pj=
(a)

% = PO ~Ph = T

(2.7)

so that

; i

(2.8) ^ - ^ = T1- ^ n-H-ey, M - U* = g - £ £ +!!!ƒ.

1 = 1 i = 1

It follows inductively that

(a) (a^ , i?) - (div v, ey) + (Pty, i?) = 0 , i? €
(2.9)

(6) (d^i^w^j + (div 4iy, w) + (ce,, w) = / r f ^ , i v ) , we

The expansions /?;- and «; are called quasi-projections and the terms
0; and i|i; are the residuals.

The objective now is to carry out négative norm estimâtes for TJ, ̂ ,
rij, and £7. It will be necessary to consider their time-derivatives as well, but
the independence of the coefficients of the time variable will make this easy.

M2 AN Modélisation mathématique et Analyse numérique
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SUPERCONVERGENCE OF MIXED F.E.M. 333

The arguments will involve duality and will follow the development by
Douglas and Roberts [8] in obtaining global error estimâtes for the
correspondent linear elliptic problem. Their argument has been based on
the duality lemma to follow.

LEMMA 2.1 : Let s be a nonnegative integer and let the index k of
Vh x Wh be at least one. Assume that Cl is (s + 2)-regular. Let T e V,
F e V' and G e W'. If F has the form

F(v)= (F09v)+(Fudivv)9 veV ,

and if z e Wh satisfies

(a) (ax, v) - (div v, z) + (pz, i?) - F(v), veVh,

(2.10)
(b) (div T, w) + (cz, w) = G(w) , w e W^;

The main theorem in Douglas and Roberts [8] of interest here is the
following :

THEOREM 2.2 : Let s be a nonnegative integer and let r\ and Ç be given by
(2.2). Then,

for 2- (s-k + l)+ as r «s it + 1 ;

(b) B | | _ ^ Ô ^ + m i n ( ^ + 1)||pilr + 1 + ( s . , r ?

for l-(^-it)Ur^Hl ;

(c) | | d iv t | | _ ,*Ö^

3. A PRIORI ESTIMATES FOR THE QUASI-PROJECTION

Assume that 5 is a nonnegative integer throughout this section, that the
index k is odd and satisfies k ̂  1, and that II is (s + 2)-regular. Lemma 2.1
implies that,

(3-1) K L , * :

vol. 21, n° 2, 1987



M.-C J. SQUEFF334-

for ƒ = 1, 2, ..., and

(3.2) | T h | | _ 1 « e

If the choice s = 0 is made in (3.1) and (3.2), then

(3.3) iKii *

for ƒ = 2, 3, ..., and

(3.4) |h,||

- 2

- 2

Now take w = div £; in (2.7&) and w = div gj in (2.5&) :

\ II -ny II + ||— '~1

(3.5) || div ^ |
, j = 2, 3 , . . . ,

h i +

Next, choosing the test function v = fj; in (2.6a) or v = ^ in (2.5a) leads
easily to

^ I I 2 } , f o r y = 1 , 2 , . . . ,(3.6) H/ll

and it follows from (3.5) that

(3-7)
+ Ihyll

1/2 ^ - ï - l l ) , ƒ = 2, 3 , ...,

Now, it follows from (3.3), (3.5) and (3.7) that

dt
; — ? 3

> J — ^j Jy

Similarly,

M2 AN Modélisation mathématique et Analyse numérique
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SUPERCONVERGENCE OF MIXED F.E.M. 335

Thus,

(3.10) ||€,|
dt

•H"*1 '
t 11-2/

||
dt 11-2

The bounds given by (3.5) and (3.10) can be applied to (3.1) and (3.2) to
obtain the inequalities

(3.11)

and

r

dt IU-2

dt H-2

, j = 2, 3, ...,

d-ny-i

II dt M H df M-S-2J

First consider the estimation of T .̂ Theorem 2.2 implies that

(3 13) I I — || -c Qhr + IBin fr»fc + 1 ) | | dP II

for 2— (s — k + 1)+ =sr

Thus,

(3.14)

Next, it follows from (3.12), (3.13), and (3.14) that

(3.15) ||

for 2 === r ^ /: + 1 .

Similarly,

(3.16)

vol. 21, n° 2, 1987
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336 M.-C. J. SQUEFF

and / a positive integer. Next, consider the estimation of —~ .
dt1

Assume from now on that j is a positive integer such that 2 / =s= k + 1.

LEMMA 3.1 :

(3.17)
dt'

Qh r + min (s + 2 /, k + 1 )

2 ^ r ^ A: + 1 .

Proof: The proof will proceed by induction, The case j = 1 is just (3.16V
So, assume that ƒ 5= 2 and (3.17) holds for ƒ - 1. First, it follows from (3.11)
and differentiation with respect to time / times that

(3.18)
dt'

, u min {s + 2, k + 1 )

- 2

dt1

, ^ min (̂  + 1, fc + 1 )

-5-2

If the choice 5 = 0 is made in (3.18), then

(3.19)

so that

(3.20)

dt1

ar'

Q

r + 2j

dt1
h2

- 2 dt1

Next, (3.18), (3.20), and the induction hypothesis imply that

^ e | / ï r + 2 i + m i n ( a + 1 )

dt'

. z, r + 2 j -f min (5 + 1, fc + 1 )

dt'+'

dtl+i r + (2;

, for + 2 j - 2 + min (s + 2, Jt + 1 )

, z- r + min (s + 2 ƒ, k + 1 )

*r Dh r + m m (J + 2 ƒ, & + 1 )

and the lemma is proved.

M2 AN Modélisation mathématique et Analyse numérique
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SUPERCONVERGENCE OF MIXED F.E.M. 337

In order to estimate || £,-1| , let 7 e Hs(Ci)2 for some integer s > 1, and let
1 satisfy

- V . (a Vip) - V . 7 , in fl

Then,

ip = O , on dü,.

7 = - a V<p + 8 , in ft,
div S = 0 , in f ) ,

St *• i **.t -a. * I J*9 '

dv on

The function (vector) 8 can be represented in the form 8 = grad e, where

Ae = 0 , in tl ,

— = y ,v + a — , on dQ, .
dv dv

Consequently,

Also,

Now, consider

11/2
dip
~dv~

( a | ; , 7 ) = («€ƒ, - a V<p) + (o|y, 8)

First,

(aÇy, - a V«p) (Çy, V<p) = (div Ç/;

Thus,

(3.21) | ( a 6 / f - a V 9 ) |

Next, since div ô = 0 and (div (8 - irh 8), T^) = 0,

Ott'a O 1 ^= t O t t ' . TT t. O I H~ ( Ott • « O — TT/i ö I

vol. 21, n' 2, 1987



338 M.-C. J. SOUEFF

Hence

(3.22) IK-, 8)| *Q\\H9{h^k + »[U;\\ + 1

It follows now from (3.21) and (3.22) that, for

+ NIL, dt \ - s - l

The estimate for s = 0 is given by (3.10) and, together with (3.23), implies
that

(3.24)
dt

y. min (j + 1, k + 1 )

1-2

for 5 > 1 and ƒ = 2, 3, ... . Similarly,

( 3 . 2 5 ) i i ^ j i ^

Next, (3.10), (3.13), and Lemma 3.1 imply the following lemma :

LEMMA 3.2 : For 2*~r?s/c + l

(3.26)
dt' r +

H € > |{ _
S dt'

for s» 1.

4. BOUNDS FOR THE RESIDUALS

Recall that
(a) (ail,,, v) - (div t;, e,-) + (pey, v) = 0 , veVh,

(4.1)

—l,w\+ (div ity, w) + (c0y, w)= ld—j-,w\, weWh.

M2 AN Modélisation mathématique et Analyse numérique
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Take v = i|i;- and w = 0y- in (4.1) and add :

Thus, intégration with respect to time leads to

339

where

and

for an arbitrary normed space X. Next, differentiate (4.1a) with respect to
dB;

the time variable and set v = *|i;-. Now, set n> = —- in (4.1e), add the two

resulting équations and integrate in time. It follows that

«e
Let

(4.4) 2

Then, Lemma 3.1 implies that

(4-5) II § *=Ö/*r

Hence

(4-6) ||e,||L.(LÎ)+||«MI,.

dt

367

ir

for 2 ^ r ^ A; + 1

for 2 ^ r ^ /c + 1. Thus, it is désirable that 6/(0) and i|v(0) be chosen so that
they are 0(hr + k + 1). Consider the initialization of uh and vh.

vol. 21, n° 2, 1987
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Recall that

Thus, it would suffice to take

(«) pA(0) = ^ ( 0 ) + £ n(0) , or 6,(0) = 0 ,
i = 1

(4.7)

<*) «„(0) = flh(0) + £ fc(0) , or *,(<)) = 0 .
i = 1

These values can be computed using no more than the data ƒ and
p0 and the differential operator. To see that, first note that dlp(0)/dtl can
be computed frompo and the partial differential équation ; thus dlph(O)/dtl

and dluh(0)/dtl can be evaluated from (2.3). Finally, (2.5) and (2.7) can be
used to complete the computation of uh(0) and/>A(0). Hence, the following
has been proved.

LEMMA 4.1 : Ifthe mixed finite element method is initialized by (4.7) and J
is defined by (4.4), then

II dÖr II || xJ+1 n ||

(4-8) |Wl.(l!)+ 1 * 1 ^ + HIT l U . , - 0 * " 1 * 1 ! ^ ^ - .
for 2^r^k + 1.

The optimal order négative norm estimâtes for the error in the mixed
method solution can now be obtained by applying the results of this section
and Theorem 2.2.

THEOREM 4.2 : Ifthe mixed method is initialized by (4.7) and J is given by
(4.4), then

(4.10)

i =0

Proof: Write

t = i

M2 AN Modélisation mathématique et Analyse numérique
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SUPERCONVERGENCE OF MIXED F.E.M. 341

so that,

L00(ff-fc-1)+ Z
* = 1

J

L00 (H-k-x) + E
i = I

The theorem now follows from Lemmas 3.1, 3.2, and 4.1.
If k is even and J is now such that 2J = k + 2, then Theorem 4.2 remains

valid [13].
Optimal order estimâtes for div (u - uh) have also been derived in [13].

5. CONVERGENCE OF DIFFERENCE QUOTIENTS

Throughout this section and the next let ü b e a rectangle in R2 and
assume that all coefficients of the partial differential équation in (1.1) as
well as ƒ and pQ can be extended periodically to all of R2 while satisfying the
same smoothness conditions as in section 1. Let 3h be a uniform grid, and
consider the mixed method for the periodic problem associated with (1.1) ;
Le., for any t e J, find {uh,ph} eVhxWh satisfying

(a) (awA, v) - (div v,ph) + ($ph9 v) = 0 , veVh,

(5.1)- (b) (dB-^,w

(c) {uh, ph) periodic of period H .

The projection [üh, ph) and the terms {£,-, r\t} of the quasi-projection
are now to be taken as periodic of period Cl as are the residuals

Next, consider the introduction of forward différence quotients. Let
lx = (fx1? |x2) have integer components and define the translation operator
rjfby

The forward différence quotient is then defined by

where e; is the unit vector in the direction of Xj, and / is the identity
operator. For an arbitrary multi-index |x set

- öh,i

vol. 21, n° 2, 1987



342 M.-C. J. SQUEFF

The discrete Leibnitz formula will be used :

(5.2) dl(uv)= l

where

In this section estimâtes for différence quotients of the error

i = 1

will be carried out. These estimâtes will then be used in the next section to
prove superconvergence. Let v be a multi-index and assume from now on
that |v| =v 1 + v2===£: + l. First, the estimâtes for {£, T\} follow from
Douglas-Milner [6] for s ^ 0 :

(5.3) II^^IL^G

for 2 - (s - h + 1 )+ ^ r ^ k + 1 ;

forl - (s-k)+ ^ r ^ J k + 1.

Next, since the spaces FA x WA are translation invariant, (2.6) and (5.2)
imply that, for |v| > 0 and ; = 2, 3, ...,

(5.5)

(a) (a d%, v) - (div v, d\f) + O 3"n,, p) =

(è) (div (Ô^ ; ) , w) + (c a ^ , w) =

Assume for the time being that / s= 2, and assume from now on that
5 3= 0. Lemma 2.1 implies that

(5.6) |a"î i / | |_ i«

M2 AN Modélisation mathématique et Analyse numérique
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SUPERCONVERGENCE OF MIXED F.E M. 343

Note that, since d is assumed to be smooth,

II / "̂Hi i \ II II / 9r\, 1 \ | |

and then,

(5.8) | |a%||_^ôUmin(s+1' fc+1)[||n ; | | + x

- * \

-8-2

Next, take w = div (d%) in (5.5è) :

(5.9) ||div(a^)H

Now, let t; = d\ in (5.5<z), and use (5.9) to obtain

Estimâtes (5.9) and (5.10), together with (5.8) imply that

(5.11)
1/2

+ Z«
fJL<V

vol. 21, n° 2, 1987
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Next, an estimate for || dv^||_ will be derived. Let 7 e Hs(Ci)2 for some

integer s ==* 1, and let 9 e H5 + 1(ft) be the solution of the periodic problem

- V . (a Vcp) = V . 7 in O.

Then, as in the estimate for

7 = -aVcp + ô in H ,
div 8 = 0 in i ï ,

and

for q*l

Now, consider

(o d%, 7) = - (o B% a Vcp) + (a d%, S) .

First, let x e Wh. Then

- (a d%, a V<p) = - (a1?,, V<p) = (div (ai y ) , ip)

= (div ( a ^ ) , 9 - x) + (div (a%), x ) ,

and it follows from (5.5b) that

- (a a*lJt a V<p) = (div ( a ^ ) + c d \ + àv{dd-^Lzl ) , «p - x )

It follows from the equality above and (5.9) that

(5.12) | ( a n / ,

3%H + £ lia11/
"V-."" -'--::• \ *

Next, from (5.5a)

(a d%, 8) = (a 3^., 8 - vh 8) + (a d\ vh 8)

il)(r* a*""ta
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since (div (8 - nh 8), d\j) = 0 = div 8. Thus,

(5.13) \(OL d\S)\ ^Q\\Hs{h™^k + 1\\\d%\\ + || 3%. ||

+ I Q\*%\\ + 11̂ 11)1+ I II^IL,+ I

The estimate for || dv^\\ _ , with s ̂  1, now follows from (5.12) and (5.13) :

(5.14)

+

The estimate for 5 = 0 is given by the following inequality that follows from
(5.10) :

The estimâtes for ƒ = 1 can be derived in a similar way

(5.i6) +

for 5 s* 0 ;

(5.17)
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for s & l ; and

(5.18)

M.-C. J. SQUEFF

Now, if the choice s = 0 is made in (5.16), then

(5.19) | | a X H

and a simple induction argument leads to the following lemma.

LEMMA 5.1 : For 2 « r « f c + l, and l a positive integer

(a)

(5.20)
dt'

at'

Qh r + 2

\r+(3~k)+ + | v j

Qh"
dtl+1 | | r + (3 - f c ) +

LEMMA 5.2 : If s 3= 1, */ie« /or 2 « r =s A; + 1

(«)
t ' / II-»

Ô/2r
a' + l ,

\r+(s+3-k)+

(5.21)

dt1

Proof: The proof will proceed by induction. The case v = 0 was treated
in (3.17) and (3.26). So, assume that |v| s» 1 and that (5.21) holds for
|ix| ^ |v| - 1. Then, it follows from (5.16), (5.20), and (5.3) that

dt
for

Next, (5.3), (5.17), (5.21a), and the induction hypothesis imply that

\B%\\
dt | | r + ( 3 - J f c ) + + \v\

+ y + min (s + 1, k + 1 )

dt \\r+(s+3-k)+ + 1 v | - i

dt
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Thus,

(5.22) Qh r + min (5 + 1, k + 1)1

I dt

for 2 =s r === k + 1. The independence of the coefficients of the time variable
now complètes the proof.

LEMMA 5.3 : For 2 ^ r =s k + 1

r + 2j

dt l+j

(5.23)

a" Qh' + 2 / - ]

dt'+> r+(2j + \-k)+ + \v\

Proof: Use an induction argument on |v| and ƒ. The cases given by
v = 0 for ƒ = 1, 2, ..., and by |v| arbitrary with ƒ = 1 have been treated,
respectively, in section 3 and Lemma 5.2. So, assume |v| > 1, ƒ ̂  2, and
that (5.23) holds for | JJU | =s= | v | - 1 and for ƒ — 1. A simple calculation now
complètes the proof.

LEMMA 5.4 : /ƒ s =s 1, then

(5.24)

S(a)

for 2

dv

dt' dt ï + i

in (s + 2 j - 1, k + 1 )

r+(s+2j-k)+

Proof: Use an induction argument on |v| and j .
Since the spaces Vh x Wh are translation invariant, it follows from (2.9)

and (5.2) that

(5.25) (a 9vi\fj, v) - (div v, dv6y) + (Pdv8;-, v) =

v e Vh. Also,

(5.26) ( d dvl —- ) , w J + (div dvtyjy w) + (c dvQj9 w) =
\ \ dt I I
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Take v = dvty in (5.25), w = dvGy in (5.26), add, and integrate with respect
to time to obtain the inequality

(5.2?) KM^rt+K*;! !^, ,*

At this stage an extra assumption will be made in order to avoid one of the
terms arising on the righ-hand side of (5.27).

Assume d(x) = d to constant
Note that this assumption does not imply a loss of generality. In fact, if d

dépends on x, then the change of variables P = dp leads to the differential
équation

d J

in which the d coefficient is constant. The mixed method will then furnish
approximation to P and to the original flow field u associated with p, since
the flow field U associated with P is in fact identical to w :

C / = V P
a

Now, with d constant, inequality (5.27) reduces to

(5.28)

Next, estimate (5.24<z) implies that

(5.29)
L\L*)

for 2 s r ^ f c + l, where

(5.30) }J = k + 1 .
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Hence, the initialization given by (4.7) implies that

(5.31)

dtJ+1

for 2 * r * Jfc + 1.
An easy induction argument leads to the following lemma.

LEMMA 5.5 :

(5-32) | | « , IU> ) + p-*,\\L,(û),Q

for 2^r^k+ 1.

6. THE SUPERCONVERGENCE ESTIMATES

In this section a new approximation {ujf,p*} to {u,p} in F x W will be
introduced and then used to establish superconvergent error estimâtes. As
in Bramble-Schatz [2,3], {u^,p^} is obtained by considering certain
« averages » of {uh, ph) that are formed by the convolution of {uh,ph} with
a kernel Kh, defined as follows.

For t real, let

j l , 1 * 1 * 1 / 2 ,

and, for / an integer, set

convolution / - 1 times. The function tyP is the one-dimensional 5-spline
basis function of order /.

Next, let ch 0 =̂  i'^ k, be determined as the unique solution of the linear
system of algebraic équations

Ie, f

For x e IR2, define Kh by

(
m = 1 \ i = - k
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where the constants cj are given by

It is known [2, 3] that

(6.1) \\Kh*w-w\\*zQ\\w\\rh
r
9 if w E Hr(Ü), 0 < r *s 2 * + 2 ,

(6.2) i|JDv(^*^)|^e||a%||5, if we

where Dv = i

l1 dx?
, and dv is the corresponding forward différence with

step h, as defined in the previous section. Also,

(63) H w || ^ Ö I Ww\\_s, 0^seZ,weL

The main theorem in this work can now be stated and proved.

THEOREM 6.1 : Let the index k of Vhx Wh be odd, and at least one.
Assume that d is constant, and that p e Hr(Q) for 2 =s= r ̂  2 k + 4. If the
mixed method for the periodic problem corresponding to (1.1) is initialized
by

Ph(o)=ph(o)+ y n ( 0 ) ,

w/zere

for h sufficient small

II U - Uh II L2(I2) + \\P

: Recall that

2/=

IL00 (I2)

7+1
y
U

i = 0

n, 4-
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Thus, it follows from (6.1), (6.2), and (6.3) that

1 1
i = 1 j v | == A + 1

and

II il L (L (

| v |

i = 1

Similarly,

\v\

The estimâtes derived in the previous section now complete the proof.
When the index k of Vh x Wh is even, the same results can be proved, if /

now is such that 2 / = k + 2 [13].
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