Superconvergence of mixed finite element methods for parabolic equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 21 (1987) no. 2, p. 327-352
@article{M2AN_1987__21_2_327_0,
     author = {Cristina, Maria and Squeff, J.},
     title = {Superconvergence of mixed finite element methods for parabolic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {21},
     number = {2},
     year = {1987},
     pages = {327-352},
     zbl = {0621.65116},
     mrnumber = {896246},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1987__21_2_327_0}
}
Cristina, Maria; Squeff, J. Superconvergence of mixed finite element methods for parabolic equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 21 (1987) no. 2, pp. 327-352. http://www.numdam.org/item/M2AN_1987__21_2_327_0/

[1] D. N. Arnold and J. Douglas Jr., Superconvergence of the Galerkin approximation of a quasilinear parabolic equation in a single space variable, Calcolo, 16 (1979), pp.345-369. | MR 592476 | Zbl 0435.65094

[2] J. H. Bramble and A. H. Schatz, Estimates for spline projections, RAIRO Anal. Numér., 8 (1976), pp. 5-37. | Numdam | MR 436620 | Zbl 0343.65045

[3] J. H Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Math. Comp. 137 (1977), pp. 94-111. | MR 431744 | Zbl 0353.65064

[4] J. Douglas Jr., Superconvergence in the pressure in the simulation of miscible displacement, SIAM J. Numer. Anal., 22 (1985), pp.962-969. | MR 799123 | Zbl 0624.65124

[5] J. Douglas Jr., T. Dupont and M. F. Wheeler, A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations, Math. Comp., 142 (1978), pp. 345-362. | MR 495012 | Zbl 0385.65052

[6] J. Douglas Jr., and F. A. Milner, Interior and superconvergence estimates for mixed methods for second order elliptic problems, to Math. Modelling and Numer. Anal., 3 (1985), pp. 397-428. | Numdam | MR 807324 | Zbl 0613.65110

[7] J. Douglas Jr., and J. E. Roberts, Mixed finite element methods for second order elliptic problems, Mat. Apl. Comput., 1 (1982), pp.91-103. | MR 667620 | Zbl 0482.65057

[8] J. Douglas Jr., and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), pp. 39-52. | MR 771029 | Zbl 0624.65109

[9] R. Falk and J. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér., 14 (1980), pp. 249-277. | Numdam | MR 592753 | Zbl 0467.65062

[10] C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 1 (1981), pp. 41-78. | Numdam | MR 610597 | Zbl 0476.65074

[11] J. C. Nedelec, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315-341. | MR 592160 | Zbl 0419.65069

[12] P. A. Ravi Art and J. M. Thomas, A mixed finite element method for second order elliptic problems, in Proceedings of a conference on Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977, p. 292-315. | MR 483555 | Zbl 0362.65089

[13] M. C. Squeff, Superconvergence of Mixed Finite Element Methods for Parabolic Equation, Thesis, The University of Chicago, August 1985.

[14] J. M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse, Université P. et M. Curie, Paris, 1977.

[15] V. Thomée, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Comp., 34 (1980), pp.93-113. | MR 551292 | Zbl 0454.65077