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ASYMPTOTIC BEHAVIOUR FOR THE SOLUTION OF THE COMPRESSIBLE
NAVIER-STOKES EQUATION, WHEN THE COMPRESSIBILITY GOES TO

ZERO (*)

by Stéphane ADDED (*) et Hélène ADDED (X)

Communicated by C. BARDOS

Résumé. — Nous étudions le comportement asymptotique des solutions (uk,pk) des équations
de Navier-Stokes compressibles lorsque la compressibilité tend vers 0 (X. —• oo ) :

px(ux

i\ wx - 0 ,
uAx)

f d ivw o = O ,

^ p\x> 0) = p0 + —— ,pQ = Cte, oùp = Apy avec y>letA>0.

Nous établissons d* abord Vexistence globale en temps des solutions ( u \ p x ) , les estimations
obtenues étant uniformes en \.

Lorsque O0 = 0, nous prouvons que wx converge fortement vers M00, solution des équations de
Navier-Stokes incompressibles suivantes :

|po(«* + (w°° . V) M00) -
{ = 0 et «œ(x (

Lorsque 4>0 # 0, nous mettons en évidence un phénomène de couche initiale. Plus précisément,
nous prouvons que wx — M00 — ux converge fortement vers 0, où vK est la solution de l'équation
co_uplée_suivante :

= 0 ,

o ,
i;x(x, 0) = ^, 0) - 0 .

Abstract. — We study the asymptotic behaviour of the solutions (u\ pK) of compressible
Navier-Stokes' équations when compressibility goes to zero (X -• + oo ) :

05
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362 S. ADDED, H. ADDED

0
* , 0) = Cte,/? with y > landA>-0.

We /rrs* establish global existence in time o f the solutions (ux,px), the obtained estimâtes being
uniform in X.

When O0 = 0, we prove that ux strongly converges to um, solution of the following Navier-
Stokes' incompressible équations :

f P 0 ( M - + ( M * . V) u°>) - v A«°° =, - V^0 0 ,

<ï>0 ^ 0, an initial layer phenomenon anses.
More precisely, we prove that ux — u™ — vx strongly converges to zero, where vx is the solution

of the following coupled équation :

h \ Vqx = 0 ,

\yp0 div vx = 0 ,

I. INTRODUCTION

Our aim, in this paper, is to study the solutions of the équations of gases'
dynamic :

(5)

P ( — + (u .V)u) - v Au = -¥p , v > 0 ,
\ dt I

^ + V . ( p w ) - 0 ; x e ü e R " , t e U+ ,

u(x90) = uo(x) , p(x,0) = po(x) ,

where the velocity u and the density p are unknown, the pression p being a
given function of p.

Klainerman and Majda in [1] have proved the local existence of a smooth
solution (M, p) of the System (5) in the case where ft is the torus
Tn of R". In [2], they show the local existence of a smooth solution of
compressible Euler's équations (when v = 0) for the whole space Un.

On the other part, Nishida and Matsumura, in [3], have obtained a global
in time resuit for the system (5) coupled with an évolution équation for the
température. In their work, they consider the case where fi = [R3, where the
gas is perfect and polytropic, and they are led to impose to the initial data to
be small enough in H3(R3) norm.
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ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 363

As far as we are concerned, we are going to study the compressible system
(S) when compressibility goes to 0, for the whole space W1, in any dimension

Let us consider p as a function of p.
A. Lagha, in [4], defines compressibility as the quantity :

[>>]•••
where p0 represents a first approximation of the gases' density.

She obtains a relation of the shape :

p = p0 + zp ,

which leads her to study the following perturbed System :

(5e)

xe

dt
te

uz(x,Q) = uo(x) , p£(x,Q)=p0(x) .

Temam uses the same définition of compressibility in [5],but he works in a
bounded open set Q of R".

On the other hand, Majda, in [6], takes a more physical définition of
compressibility by considering the state équation of a perfect gas :

P = Apy , 1 .

From the initial system :

he is led to consider the following perturbed system :

§ + div (p3) = 0,

— + (S. V)w ) +X2Vp(p) = 0 ,

p(Xî0) = - ^ , S(x,0) =
9m

vol. 21, n" 3, 1987



364 S. ADDED, H. ADDED

where

pm = maxpo(x) and |wm| = max |woOO|

The compressibility is there given by 1/A2, with

Majda proves, for « small enough » initial data, the existence of a smooth
solution for the System (Sx), when \ is sufficiently large.

We have choosed to use this last définition of compressibility, while
keeping the viscosity term : — v Au.

This led us to consider a perturbed system, between those studied by A.
Lagha and Majda, of the shape :

- v Aux = - X2 V/?x ,
VI f

_E_ + (Vpx) . ux 4- 7/?xdiv ux = 0 ,
dt

u+ (x\ n, (Y)

-, pn = Cte .

The shape of ux(x, 0) = UQ(X) and ^X(JC, 0) = p$(x) issues from a formai
asymptotic development (see [6]).

In the paragraph II, we have followed Lagha's way of proceeding which
was taking its inspiration from Nishida and Matsumura's technics.

We introducé

E \ t ) = \ u \ t ) \ 2
H ! + | M p x - p o ) & where * > [ £ ] + 1 ,

and we prove that, for sufficiently large X and for « small enough » initial
data, there exists some constant Ko, independent of X, so that :

Vf eR+ , E\t)+ P \Vu\j)\2
HSdT+ P

This resuit permits to conclude, in any dimension n 5= 2, that there exists a
unie smooth global solution of the System (Sx), for small enough initial
data :

ux e CB(0, oo5 H') n Cl
B(0, 00, Hs~2) ,

(px - Po) e C B(0, ou, Hs) n Cl(0, oo, Hs~l) , w h e r e s > [ ^ 1 + 1 .
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ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 365

In the following part of our work, we study the asymptotic behaviour of the
solutions (ux,pk) of the system (Sx) when the compressibility goes to zero,
so when \ goes to infinity.

In paragraph III, we add the classical following hypothesis :

div MO = O ,

and we study the convergence of the solutions (u\/?x) to the solution
(M00,p™) of the incompressible Navier-Stokes équations :

(S00)

— + (uœ.V)uc°) -v,
dt )

divw°° = O, uœ(x, O) = MO(;

We first obtain supplementary estimâtes concerning the time derivatives,
independent of X sufficiently large :

Vre

where

\ i

and M(t) e L£C(R+ , R+ ) .

This leads us to state the following weak convergence resuit, obtained by
Klainerman and Majda in the case of the torus of R" and by A. Lagha in
R2:

If Ü, = R", with n ^ 2, then

ux^u™ in Cloc(0, ao,Hïo-c
l) strongly,

\2V/?x^Vp°° in Lj£(O, oo,Hs~2) weak star (w.s.) ,

p x ^ p 0 in CB(0, oo, W00^"2) strongly.

Ho we ver-r Klainerman, and Majda, in [2±, prove th& strong convergence of
the solutions (uK,pK) of compressible Euler's équations :

dt

pö = Cte , div «0 = 0 ,

vol. 21, n° 3, 1987
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to the solution (u°°,/>°°) of incompressible Euler's équations

Po

by imposing supplementary conditions to |jp
G0|L2 and l i ^ L ^

(It is, of course, a convergence on a finite time intervall.)
In paragraph IV, we take our inspiration from that technic. We impose to

the solution (w00,p°°) of the system (S00) to vérifie the following
hypothesis :

(H) |pC0|L2+ \p?\L2*N(t), where N e L £ ( R + , R + ) .

Then, when the initial data (UQ,PQ —p0) are in Hs + 2(Rn), we prove that
there exists a locally bounded function M{t) so that :

VI £ H , VA ^ Ao ,

In paragraph V, we have studied what happens with the convergence of
(ux,pk) to (M00,/?00) when we eut out the fundamental hypothesis:
div u0 = 0. So we consider the initial data with the following more gênerai
shape :

ux(x)
with div u0 = 0 ,

Pi(x)
X

- Cte.

In f act, an initial layer phenomenon appears.
A fitting corrector term is given by the solution (vK, qx) of the following

system (Cx) :

(Cx)

fin

ot

= 0

We prove, in appendix, that if <ï>0 is choosen regular enough, then
vx vérifies the following inequalities :
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ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 367

|üX(-'0l^TT\F i f ^ 3 '

We obtain the following result :
If the solution (w00,;?00) of the system (500) satisfies to the hypothesis

(H) and if the initial data are regular enough (we'll précise these
assumptions later), there exists some locally bounded function M(t) so that,
for sufficiently large \ , we have :

if n ̂  3 ,

if n = 2 .

We then end by a remark concerning an initial layer's phenomenon in the
compressible Euler's équations.

Notations :

— | . | L , (or | . | ) , \>\Hs and \.\wklP will design respectively the norms

Lp(Un), Hs(Un) and Wk>p(Mn).
— We'll call « C » different numerical constants and « K » different

quantities only depending on initial data.
— Finally, M{t) or N(t) will design different increasing functions of

II. INDEPENDENT OF \ ESTIMATES. GLOBAL EXISTENCE

A. Independent of A, estimâtes

Let us consider the system (SK) :

(2.1) PX(W,X+ (w\ V)uK)-vAuk= ~\2Vpk, XG

(2.2) p ï + V p k . u k + y p x d i v u K = O , teU+,

(2.3) u\x,0) = uk(x), p\x,O)=po+?±Q,po

where UQSHS, Po>O, p1eHs, s being an integer verifying

s > s0 = \ ~ + 1, and where p = Ap^, y > 1.

vol. 21, n° 3, 1987
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Let us note that équation (2.2) may be written :

(2.4) p^ + div (pxux) = 0 .

We are going to assume «a priori» that (ux,px) satisfies the following
H(K, T) hypothesis :

There exists T > 0 and K > 0 so that (uk,px) is a solution o f (Sx) on the
intervall [0, T]> verifying :

uxe C([0, T], H') n Cx([0, T], Hs~2) ,
^ ^ G C([0,T],H')n C\[0,T],Hs-1) and

where Ex(t) is defined by the relation :

E \ t ) = l A ^

We are going to prove that, in these conditions, there exists some
constant C0(K), independent of T and \ , and there exists Xo > 0, so that :

W e [ 0 , r ] , VX^Xo,

E\t)+ \
Jo

(where E$ = EK(0)).
First, let us make some preliminary remarks which will appreciably

simplify the proof.
Let us note

pk(x,t) = \(p\x,t)-p0) and

pk(x,t) = X(px(x,0-Po) w h e r e Po=A9o -

LEMMA 1 : Under hypothesis H(K, T), and ifk 5= \l9 then there exists four
strictly positive constants pu p2, Pi, p2î so that :

VATGIR" , V Ï G [ 0 , T], 0^p1^px^p2

and 0 < pj ̂  px ̂  p2 .

In f act,

| J P x - J P o | 0 0 « iP^-.Polfl. ( s i n c e
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«/ ^ . 2 A: , . , . Po 3 Po
We have just to choose X: = , which gives p\~ — , p2 = •

Po 2 2
Moreover, if ft(p) = Apy = /? \ then 0 /z"1 ( — ) « P ^ A W -5-) •

LEMMA 2 : There exists two constants Cl and C2 and \2 = k2(K), so that,
if \ ^ \ 2 ^ \l9 we get :

and Q I D ^ I ^ I D ^ I ^ C J I D ^ I ^ .

Let us note fe = ft"1. Then there exists p e e [po '^L s o

p* = X[^(px) - k(p0)} = 1

Then,

So, for large enough X, |pK | and \pK\ are comparable.

Moreover, Z)px = k' (pK). D^x ; A: and all its derivatives being locally
bounded on R*, we may conclude with lemma 1.

LEMMA 3 :

(i) Ds px may be written :

p ( p ) p * where

In particular, |Z>px| ,_t and \DpK\HS_i are comparable as soon as X is

sufficiently large, X =* X3 =s= \2.

; — , a? soort as X ts- large enottgh.

Proof:

(i)

X/X

vol. 21, n" 3, 1987
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If X 3= max (K2
t 1), we deduce from hypothesis H(K, T) that

I x l ^ C l Y ^ I ^ . ! . Then, sinceO^fc'CpaJ^fc'Cp^^fc'Cpj), we get that

\DpK\H$~\ and |£>/?x| s_i are comparable,

(ii) We just have to note that if 4>(x) = x~l, then :

We end with the assumption //(X, T).

LEMMA 4 : /ƒ u, v and w are smooth functions,

(v • V ) w . w dx = — ( i ? . V ) > v . w < i x - ( u . w ) d i v i; d x .

In particular,

(v.V)u.udx = - - \u\2 div v dx .

L E M M A 5 [7] : Let f and g be two smooth functions

(2.5) \ k k

(2.6) \

where fc>0,z?6 [1,+ oo] and — = --\— = --\—.
p r r' s s'

We are now able to establish the desired « a priori » estimâtes.

First step : L2-Norms of uk and pK.
\uk\2

Multiplying (2.1) by u\ and (2.4) by -—L ? We get :

Then, integrating on IR" :

r \uK\2
 x „ r x x+ J T ~ 1V(P U> = X ] P dlVM •

M2 AN Modélisation mathématique et Analyse numérique
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ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 371

We deduce from lemma 4 that :

;) f oK\uk\2 C C
(2.7) ~ Î-J—Ldx + v \Wux\2dx = k (pkdivuk)dx.

Let us introducé

Multiplying (2.4) by — (px W), we get :
dp

j t f px W è + f div (px MX) Wrfx +

+ f (pk)2 div uK?^dx+ f
J ^P J

Now,

f div ( p x w x ) W ^ = - [pxuK.VWdx=- f

and f (px)2 div uk — dx = \ f ^ div

J 3p J

what gives us :

(2.8) A f P
xW«fcc + \ jVdivwx<ü:

We then can deduce from (2.7) and (2.8) that :

—

— ] [

and thanks to lemma 1 :

So we have to estimate | px W dx.

vol. 21, n 3, 1987
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(i) Minoration : Let us consider

\p (s )
ds .

The shape of 4> gives immediatly :

<ï>(po) = <ï>'(po) = O and *"( P o ) =

and 2 3

So = | (Px - Po)2 X2 7Po7"2 + f 7(7 - 2) \2(px - p0)

with pe = p0 + e(px - P o ) , e e [0, 1].

Now,

O A.

Since C = — 7Po ~

we have :

(ii) Majoration

Since pK(s) = X

Then

0, we get that : for X large enough, X =2= X4(A^) ^ X3?

then Sup \p\s)\
ÏPo. Px]

r
Po Po

P Po
dx.

So, thanks to lemma 2, we get that :

M2 AN Modélisation mathématique et Analyse numérique
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Finally, we conclude that :

Under hypothesis H (K, 7) , there exists \ 4 = \4(K), and

some constant C, independent of T,X and K, so that,

(2.9)

G [0, T] , V\ 5* \ 4 , we have :

*x(x) = \(p\x,O)-po).

2nd Step : Estimate of
Jo

Multiplying équation (2.1) by -̂- , and integrating in time and on

n, we get :

K , ^ dx dr = - u ? - i - rfx ̂ T - -̂  i — dx dr

Jo J ?x Jo J ^ Jo J x

' fAW \VpA
Au\ VpA

ô

Now

r T7̂ ^ r r T?^ I^ H r
1 dx dx

•[ƒ"?*]

' - f' f M X . VP(
X

o Jo J

+ div MX . div (px MX) dx di.
o Jo J

Finally,

, f ' f Vpx . V^x . ,
fl) = -ï-—r-dxdt

Jo J Px

= F f M
X Z Ë ! d*l' + f' f div « x . div (px MX) dx d-x

Jo J Xpx Jo J k+ v

= (b) + (c) + (rf) + (e) .

(i) We get from lemma 1 :

Jo J P

vol. 21, n' 3, 1987
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(ü) I

(iii)

S. ADDED, H. ADDED

\D~p\0)\2
2± \D~p\0)\

X

as soon as \ 3= sup (\4, 1) .

-dT

1 f' x
- \DPx Jn

5* + A f'
X

0>y(2.9))

(iv) |(d)| «_^_
X ^ o

,2 et— f
P? ^ JePi

We deduce from ail above that :

o
C FK 1 n

Xv X
(by (2.9)) .

0

We conclude from that :

(2.10)

Under hypothesis H {K, T), there exists
X5 = \5{K) ^ max (X4, 1,

5<?me constant C, independent of X, T, A' 50
e [0, VX ^ X

5 ,

The norm \u\H$ being equivalent to the norm ( | u | | -*- \Dsu\2
2), we go

straitly to the :

3rd Step : L2-Norm of the derivatives of order s.

Deriving équations (2.1) and (2.2) s times yields to :

(2.11) d V ui) + ds(px(ux. V) ux) - v A dsux = - X V d'pk,

(2.12) dsp) 4- ds(Vpx . ux) + yds(px div ux) + Vyp0 5'div wx = 0 .
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The opération

ƒ [(2.11) . yPo ̂  + (2.12) . d^ + (2.4) 7Po ̂ ^ ] dx

leads to the following equality :

J t3 V ̂ X) -
^ ,>

div (pK u k ) ^ p j ( ( ^ ) ) ç

MX] aJjpx <fcc - . 7 [ a'(£x div MX) d*px dx

(fl) + ( 6 ) + ( c ) + ( d ) + ( « ) + (ƒ) .

(i) Let us estimate (<z). Thanks to (2.5), we may write :

* C | D ' M X | 2

Now (2.1) gives us :

Thus

We now use an inequality due to Gagliardo and Nirenberg [9].
So, with hypothesis H(K, T), we can get that :

as soon as X 5= \ 5 .

vol. 21, n 3, 1987
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On the other hand,

Ds-y

S. ADDED, H. ADDED

X . . X IC|PX« - 1

We know that (lemma 3 (ii)), as soon as X is large enough,

Moreover, using assertion (2.5) of lemma 5 and hypothesis H(K, T), we
get:

C\\D'p*\2 + C

So, when X is large enough, X & X6(̂ C) & X5, we have :

and (a) vérifies the same inequality.

(ii) Thanks to lemma 5 (2.6), lemma 3, and hypothesis H(K, T), we
deduce the following estimate for (è) + (c) : (p ^ 1)

K*) C(a)\Duk\2
2

0L \Dspx\2
2).

(We also need the inequality :

(iii) For (d), we just have to write :

(V dsp» , u) dspr dx = - div u •dx

M2 AN Modélisation mathématique et Analyse numérique
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(iv) Thanks again to lemma 3, to assertions (2.5) and (2.6) of lemma 5
and to H(K, T), we finally estimate (e) and (ƒ) in the following way :

| (e)

So, taking into account these estimâtes and lemma 1, we find, integrating on
[0, r ] , that there exists p > 1 and X6 = X6(iQ so that :

Vf e [0,7], V\^X6,

\D8u)i\2+\Dspk\2+ \' \Da + 1u
Jo

K3f2) f' \Dpx

Jo

C(a)(l+K3a)

Then, using results (2.9) and (2.10), choosing a = 1/4, and
X7 = max (X6, 4 KC ), we obtain the following result :

(2.11)

Under hypothesis H (K, T), there exists

x7 =
3 > 1, and some constant C, independent of X, K and T, so that:
Vf G [0, T], V\ssX7 ,

\D'ux\\+ \D*px\\+ P \D5 + 1uK\2
2dr^

We now have te-estimaimate |
Jo

^l^/Tj^which-is the aim of the :_

4th Step: Estimate of \DspK\2
2d>r.

Jo

First, let us note that if we call vx = px u\ équation (2.1) becomes :

(2.12) vx + (pk . V) ux + wxdiv vk - v Awx = - X Vpx .

V ds~Deriving (s — 1 ) times in x this équation, multiplying by —

integrating on Un x [0, T]9 we obtain :

vol. 21, n" 3, 1987
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V ds~ XpX . V ds ~ XpX dx dr =il
a p

- l - \

(i) From lemma 3, we easily deduce that :

It follows that there exists \s = \S(K) so that, for any X ̂  K8î we have :

(ii) Estimate o f (a).

V -js-l~\ ~\t Ct C

"*i;" —dx\ + ^ " T . v a 1 " ^
^ Jo Jo J

dxd-v.

Now, p(
K = - div (px uk) = - div vk. Then,

x Jo

So,

+

On the other hand, thanks to lemma 5 and to hypothesis H(K, I ) , we
obtain :

(2.13)
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What gives finally :

+ £ \D°u% + £ \D'P% + C(a) J' |DK^«*T

Jo X

(iii) It follows from lemma 5, (2.9) and (2.13) that :

\c + d\
|Ö'PX|

and consequently,

c + ,

"i: Î + 1

(iv) At last, we get easily :

o o

We deduce from the estimâtes above the following resuit :

Vf 6 [Q,T], Vk

(2.14)
JQ

- J :
Choosing a small enough and putting together the results (2.9), (2.10),

(2.13) and (2.14), we can conclude.
Namely :

PROPOSITION (2.15) : Under hypothesis H(K, T), there exists some
constants N e N* and C s= 1, independent of\, K and T, and \9 = X9(K),
independent of T, so that :

Vf e [0, T] , V\=*\9 ,
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"X(O|2H*+ 1^(01^ .+ f |VMX |2H
Jo

( O I ^ + f \Vgx\2
 xdT^

Jo
and

COROLLARY : Under the same assumptions, the following estimate is
verified :

{for some MeN*).

(It is a conséquence of (2.15)).

B. Global existence

We first have to see that there really exists K and T verifying hypothesis
H(K, T).

Taking our inspiration from Nishida and Matsumura's technic in [3], we
get the following local existence's resuit :

PROPOSITION (2.16) : Let (u^p^ G (Hs(Un)f, andp^{x) = p 0 +^I*£i .

Let En =

Then, for large enough k, A =2= X10, there exists a unie solution o f the System
(Sx) on some interval [O, T\EQ)\, verifying:

(i) TX(EO) is an decreasing function of Eo ;

(ii) The solution (w\ pK) satisfies :

WG [0,T\EÏ)],E\t)= \u\t)\2
HS+ \\(p\t)-po)\

2
HS^HES).E£,

where <\> is an increasing function, independent o/ X^X10, so that

Now? we are going to put together proposition (2.15) and the above resuit
to prove the global existence as soon as X is large enough.

Let us introducé Ko realizing the maximum of the function NP (K) :

Let us note Xo = max (X9(^0), X10).
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Choosing EQ SO that EQ**W(K0) <zl9 we get :

^ o

Let us note To
x = T\C (1 + K0)

N £o
x) ̂  T\E%).

Thus, we deduce that hypothesis H(K0, TQ) is verified as soon as

It yields, from (2.15), that :

We[0,T0
x], VX^Xp, E\t)^C(l+Ko)

N .E£.

In particular, E\T^) «s C (1 + ̂ f • £o-
Now, let us apply the result (2.16), taking TQ as initial instant. Since

E\T£) ^ C( l + Xof . £0\ then T o ^ T \ \ *
So, it follows that :

W e [To\ 2 T0
K] , VX ̂  Xo , E\t)

Now, by construction :

+ (C (1 + iCof . £o
x) . C (1 + Kof . E^

« <KC(1 + Xof ) . C (1 + Kof . ¥(Ko) ^ Ko .

So, Vre [0,2r0
x], VX*X0, £ x ( 0 « ^ o -

Iterating the process, we get the global existence.
Namely :

THEOREM 1 : There exists ko>O and K0>0 so that : If EQ =S KO and
X 2= Xo, then the system (Sk) admits a unie global solution (w\ pk) verifying :

uxeCB(0,oo,Hs)n Ci(0, ao,H'-2),

eBie, ao, H^n Gi<0-, œ, H'"1) ,

Vf & 0 , V\ SB \ 0 ,

+ r
Jo

Moreover, \dj>x\ Y and | ^ r p
x | 5_! are bounded, independently of

X S: X0.
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We are now going to establish some independent of X estimâtes on
derivatives in time, in order to obtain some convergence's results. This leads
us to consider an initial data UQ of the shape :

wo
x(x) = uo(x) + - ux{x) , where div uQ(x) = 0 .

A

Hl. A WEAK CONVERGENCE'S RESULT

Hence, we consider the System (5X):

(2.1) pxwx+px(wx . V)ux- vAux= - \ V p x ,

(2.2) px + ux. Vpx + ypK. div ux + ^yp0 àiv ux = 0 ,

\£.J) u \x, yjj — UQ\X ) ~\-— u^yx ) , p \JC,\J)—PQ-\—~Pi\X) ,

with the supplementary condition :

(3.1) divwo(x) = O.

The opération 3,(2.1) x yp0 wx+ a((2.2) x px gives, after intégration on
Rn and thanks to lemma 4 :

1 , ^

(7-M

We deduce from that, thanks to lemmas 1 and 3, and to the results of
theorem 1, the following inequality :

This part of the reasoning clearly shows the necessity to introducé the
assumption (3.1). As a matter of f act, it permit s to obtain that, under the
hypothesis of theorem 1 :
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and

"o c.

So, for \ large enough, we have the following result :

• x . 2 , x 2 f ' , x 2 r

(3.2) WssO, |M^|*+ | ^ | 2 + |Vw f
x | ^dT^Ce a .

Jo
Using of the same methods for the derivatives of order (s — 2) in x, we get
the equality :

s~ V

f D'-\pï Ds~2 uf dx

f D s
- 2 ( p x(px

- 7

Except the first term of the right member, all the (numerous !) terms of this
equality can be estimated by the technics developped all along the
preceeding paragraph (lemma 5 and estimâtes of theorem 1).

Let us study this particular term a little more attentively.
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Let us write :

f' f
f UDp^^lD'-3^ + \D'-2pk\r\uï\ ]\D'-2ui

Jo

Taking (r, r' ) = (oo, 2) when n = 2 or 3, and (r, r' ) = ( -^— , - ) when
\ n — 2 2 /

n =2= 4, we get :

iD-v i r ^iP x i^x and
 I^I^WIH-'-

So, we just have to estimate — \u\\ s_3dr.
Jo ̂>

Let us note x = | uf\ ,_2 4- \p)\ s_2, and let us dérive in time the équation

(2-1).
Proceeding by the now classical method, and using lemma 4, lemma 5 and

the results of theorem 1, we get :

Which yields, for X large enough, to the following Gronwald's inequality :

X ( O + f | V « f
x | j * 2 d r * C X ( 0 ) + C f x ( T ) d T .

Jo Jo

We then can state the obtained result in the :

PROPOSITION : If UQ(X) = uo(x) + e H\ with div w0 = 0, /ƒ
X

PQ(X) = p0 H 2~ ' wühpl € Hsand s => - + 1? ïAen, wnrfer tóe assump-
X L -̂  J

riowj of theorem 1, the solutions (ux, pK) of (Sx) verify, as soon as X is
enough, in addition to the already obtained estimâtes :

(3.3)
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In particular,

(3.4)

where M(t)

|div

Now, we have got all that is necessary to prove that the séquence
(uK,pk) weakly converges (in a sense that will be precised), to the solution
(w00,/?°°) of the viscous incompressible fluid's équation :

(s00)
P0(w r

co+ ( M 0 0 . V ) M 0 0 ) - V A W 0 0 = - V / 7 0 0 ,

divw°° = 0 , K°°(jC,0) = MO(JC).

Remark : We'll now write « ux » for any subsequence of u \ In f act, this
notation is justified : the unicity of the solutions (wx

?/?
x) and (M°°, /?°°)

shows, a posteriori, that this is really the séquence (ux,pK) that converges
and not any subsequence.

From the estimâtes of theorem 1 and from (3.3), we deduce that there
exists «°° verifying :

« , x -m* in

so that :

(3.5)

and,

(3.6)

Moreover, from the inequality :

uœ € CB(0, oo, Hs) n Ci(0, oo, Hs~2) ,

^ M 0 0 in L°°(0, oo,i/s)w-s- ,

, oo, w.s. ,

Vwx->Vw°° in L2(0, oo, Hs) w.s. ,

SJu^Vuf in 1^(0,00, Hs~2)w.s. .

we deduce :

(3.7) p x - ^

Then , px w x - • p0
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From (3.5), we get that :

wx -• M00 in L™c(0, oo, Hfo~
l) strongly and almost everywhere .

These last points lead to the following resuit :

p x (u \ V)wx-,po(w00. V)w°° in £>'(0, au,!!3-1).

Let us now consider <|> in D(0, T, Hs~2), so that div c|> = 0. Then,

(pK(wr
x + (wx. V ) w x ) - v A u \ c|>) = 0 .

Making \ go to + oo, we deduce from the above results that :

(div * - 0 => (po uf + poCu00 . V) M00 - v AM00, <(>) = 0)

So, we have shown that there exists some function p™ verifying :

Po M" + Po(w°°. V) w00 - v Aw00 = - Vp00.

By construction, it is clear that :

and \Vpx-*yp°° in L^c(0, oo, H5"2) w.s. .

We can gather all these results in the following theorem :

THEOREM 2 : Let us consider initial data of the shape :

«o(*) = "oOO + r ^ i O ) » ^o(^) =Po + -2

div w0 = 0 , Po = Cte ;

(Mo»«i.^i)e [H5(Un)]\ with 5>

Then, the séquence (ux,px) converges to (w00,/?00), solution o f the system
(5°°), in the following sensé :

ux^u™ in C{oc(0,oo,Hïo-
l(Rn)) strongly,

X V p ^ V p 0 0 in L£.(0, oo,^"2([Rn))w.5. .

/n addition, w00 e CB(0, oo, iî5) H C^O, oo, 2

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 387

Remark : We have shown a double stability for the system {Sx) :
— On one hand, stability of the estimâtes towards X large enough.
— On the other hand, stability of the limit (w00, jp00) towards the initial

data (wi,/>i) smooth enough.

In particular, to obtain the results we need concerning the derivatives in
time of w00 and p™, we can choose ux = pl = 0.

In this case, taking u0 smooth enough and deriving once more in time the
équations (2.1) and (2.2), we just have to proceed as usual to get uniform in
A estimâtes on uft and p)v

Which, passing to the limit, allowds to énonce the following properties :

PROPOSITION: Let us suppose that |wo|^5+Jt< Ko (&^1) . Then :

Such a resuit naturally raises the following question :
« Could we get a best convergence by adding new fitting assumptions ? ».

IV. STRONG CONVERGENCE

Like it often happens, to establish strong convergence's results, we have
to give more regularity to the initial data.

Moreover, we have an estimât e of | Yp°°| fc and | V/7r°° | k_29 but we don't

know anything about \pco\2 and |/7r°°| .

So, like Klainerman and Majda [2], we are going to impose to
| /? x | 2 and \p?\2 to be locally bounded.

We then get the following result :

THEOREM -3 : Let^us-eomider the system (Sk) with^Jniiial^data :

u\x, 0) = uo(x) + - ux(x) , p\x, 0) = p0 + —Prix) ,

div u0 = 0 , po>O ,

(«o,«i ,Pi )e[ i ï J + 2(R'1)]3, with *

Let us suppose} in addition, that the following assumption (H) is true :

(H) \pm(t)\2+\Pr(t)\2^M(t), where M(t) e L&(R+ , R+ ) .
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Then, there exists Xo === 0, so that :

+ X2 f \V(ux-u™)\2
HSdT^M(t).

Jo

X

Remark: The assumption | M O | ^ + 2 ^ ^ O is necessary to assure global

existence of (w\/?x) and (u00,^00), as soon as X is large enough (see
theorem 1). Before going on, let us sum up the results that we have already
got, in the case where the initial data are in Hs + k, with J t e N * :

(4.1)

(4.2)

(4.3)

(4.4) ^ ^

K
(4.5) \ x \ | X |

(4.6)

(4-7) t
(4.8) f |VA°° |^ + *-

Jo

Having got all these important results, we are now going to use the usual
technics to prove the resuit of the theorem.

Let us note

Û = X(M X -M°° ) and p = K2(pk-Po) -p™ .

(N.B. : It follows from hypothesis (H) that p e L2 and pt e L2.)
Then the couple (û,p) is a solution of the following System :

(4.9) powf + p ^ ^ p y ( V ) ^ + p o ( W \ V ) ö +
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(4.10) p, + X Vpk . uk + ypx div Û + Xyp0 div Û = -p? , (div w°° = 0)

(4.11) u(*,0) = M l(x) , Jp(x30)= Jp1(^)- jp
c o(x ;0).

: L2-Norms of û and p.

Multiplying équation (4.9) by 7p0 û and équation (4.10) by p, and
integrating on RB, we get :

f f
"TPo PX(W^ + M X V M X ) M ^ - 7 P 0 P 0 {uKV)û.ûdx

- ypo Po J (û Vu00) à dx

Thanks to estimâtes (4.1) to (4.7), the right member can be majored by :

Using the supplementary condition on pf°9 it yields :

V ^ O , \ü(t)\2
2+\p(t)\2+

2nd Step : L2-Norms of Ds u and Dsp.

Let us dérive s times the équations (4.9) and (4.10), multiply the first
obtained équation by ypö d

sû, the second by dsp9 and integrate on
Rn x [0, t]. Using the results (4.1) to (4.8) (for k = 2), and the usual
technics to estimate the obtained terms, we get :

\Dsû\2
2+\Dsp{t)\l+

+ C f (\Dsû(T)\2
2+\Dsp(T)\2

2)dT + C \'

So, V^0, |

Remark : We can get « good » principle parts by scaling non linear terms.
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V. AN INITIAL LAYER PHENOMENON WHEN div u0 # 0

Hence we consider the solution (uk,pk) of the System (Sk) :

(uk.V)uk)-vAuk = -kVpK ,

pk kpk + uk . Vpk + ypk div uk + Kyp0 div uk = 0 ,

, 0) = UO(X) + - , 0) = Po + "2
K

with now div u0 =£ 0.

Let us write :

(5.1) u0 = v0 + V<|>0 , with div t?0 = 0 .

Since the solution (w00,^?00) of the System (5e0) vérifies the condition:
Div w00 = 0, it clearly appears an initial layer's phenomenon.

A fitting corrector term is provided by the solution (vk, qk) of the linear
following System :

(Ck)

(5.2)

(5.3)

(5.4)

We'll establish, in an appendix, the following result :

PROPOSITION (5.5) : If <t>0 e Ws + n + 4(Un), then vk vérifies the following
L00 - L 1 estimate :

r
VI +

if n = 2.

Let us consider the solution (u00,/?00) of the System (S00) :

Po W + ("°° • V) O - V A M ^ - V ^ ,

diva00 - 0 , M°°(A:,0) = VO(JC) .
(5e0)

Like in paragraph 4, we'll impose, in the whole part left, to p™ to verify :

\p'°\2
2+\p?\2

2*£M(t), where M(t) s L£(R+ ,R+ ) .
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We then prove the :

THEOREM 4 : Let us consider the system (5X) with the initial data :

ux(x,Q) = vo(x) + V<t>0(x) +-ux(x) , with divvo(;c) = 0 ,
A

\ / Ax I

X2

and <f>0 e Wl>s + n

Lef us suppose, in addition, that hypothesis (H) is verified.

Then, there exists \0 s= 0, so that :

f >0 , V\5=\o,

ï ƒ «33 ,

if n = 2 .

Froo/ : Let us note w = wx - uœ - vk and b = p x - - p 0 0 - <?\
A

Considering the équations satisfied by (ux,px), (uço
ip

co) and ( v \ ^rx)? we
find that (w, &) is a solution of the foUowing system :

(5.6) px wt + p0 w Vu00 + Po wx Vw> - v Aw + — yf
x +

+ È_ (M« + w
x Vwx) + po(t;

x Vw00 + wx Vi?x) = - \ V6 ,

(5.7) bt + uK Vb + 7 ^ div w + \ T P 0 dïv

- p0 v; — = 0 ,
KA X X / X

X X 1

Let us note :

(5.9) h(x,t) = wt + —— and k(x,t) = bt
P
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Thanks to estimâtes (4.1), (4.5), (4.6) and (4.7), we deduce from the
smoothness of the initial data (k = 2), that :

(5.10) W*0, \h(t)\HS+\k(t)\H^M{t).

Let us also note that équations (5.6) and (5.7) can be written as follows :

(5.11) p* w ,+ P0(wV)woo + p0(uxV)>v-vAw + £-i;* + / x = - X Vfc ,
\

(5.12) (l-ÈL) b, + u\ Vb + \ypodi\ w - Pov^ + gk = 0 ,
\ kp0 f X

where ƒx = £_ („» + (M
x V) ux) + Po((i;x V) u°° + (uKV)vx),

and gx = i (ƒ>«> + wx Vp00 + VMXAI;X + ^ k - Ê-p?\ + ypK div vk .
x \ ^ /

Let aK(î) be the quantity :

We are going to need the following lemma :

LEMMA (5.13) :

^ 2 if n = 2 and

It is immediatly deduced from proposition (5.5) and from the assumptions
of theorem 4.

Ist Step : Estimate o f w and b in L2-norm.

Let us multiply équation (5.11) by ypQ w and équation (5.12) by b. The
only true difficulty lays in the terms :

Ê-t?,xw and —v)b,
\ A.

because we just know that — is bounded.
\

To avoid this difficulty, we just have to integrate by part, using (5.9). So,
we obtain :
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r
= J

!* Po A) div M X | W | 2 + div wx-L—L ]

( o v \ v \

^ T b-po — u^b-gKb) dx

[o, t]

From the results of theorem 1 (§11), we easily deduce the foliowing
estimâtes

I I T / \ I J Tf I 2 J

11 j yr ) | «T ^ /C Xo ^ T 5
Jo Jo

|^2(T)| dr ^ K\oCik(t) ,
Jo

V(0

Let us also note

Then /4 vérifies :

Now, thanks to hypothesis (H) and (5.8), we deduce that : Xo(O) «s — •
A.

Thus, we get the following inequality :

Xo(0 ̂  4 + f Xo + T a"('} + ^xo a ^ ° + K f
o
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SO

(5.14)

2nd Step : Estimate of Ds w and Ds b in L2-norm
We'll use the technics developped in paragraph II (pp. 16-18), the

difficulty raised in the first step being solved by integrating by parts again.
(We shall use in particular the inequalities (2.5) and (2.6)).

The opération

f f
Ds(5.6)yp0D

swdx+ D\5J).Dsbdx
J J

hence gives :

D\w . Vuco)iy

' - [Ds(uK.Vw)-uxDsVw).Dswdx
(Ds w}
K ' [Ds(uKVw)uxDs

J ( d l V M " 2 p00 2

[Ds(u*-. Vè) - u\Ds Vb)] . Dsb) dx

Ds fK . Dsw - p0 D
J V(ux VX) DS vAdx

ƒ ( wt) -

= / j + I2 + 73 + I4 + I5 + I6 .
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Let xJ(O = Sup (\DSW(T)\2 + \D'b{T)\2
2).

10, r]

Thanks to the lemma 5 and the results of theorem 1 in particular, the
intégral

Jo

is majored, as in the first step, by :

K\L ?
Also, if we note

then, | / 7(O| ^ f (Xo + X.) ^ flx(O ' (Xo + X.) -

Now, we have to estimate /6. Using (5.9) and (2.5), we get :

h(t) ^ ^ Xs + (Xo + X,) • X, + -g \P™\HsXs •

Thus, we get the foUowing inequality for \s:

o + XS) a\t) + a\tf + j ' (Xo
2 + X?)(T) «*rl,

what, added (!) to (5.14), leads to a Gronwald's inequality verified by
Xo + X?. Hence,

Finally, let us remark that :

So, the theorem is proven.

Remark : As in paragraph 4, we can find a principal part of uK — w00

which, in f act, is the same than in the case : div w0 = 0.
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A REMARK CONCERNING EULER'S EQUATIONS

In [2], Klainerman and Majda study the compressible Euler's équations

(Ex)
dt

iv MX = 0 ,

with again : p = Apy, y > 1.
First, they consider initial data :

4 e Hs\Un) , G>ox - Po) e Hs(Un) with s> | j ] + 1 .

Then, they obtain, on a finite time intervall, estimations of the same type
than the ones obtained in paragraph 2 (by completly different methods).

More precisely, they prove that there exists a finite time intervall
[0> T], depending only on initial data, and a constant A5 > 0, so that, for
k^l, there exists a classical solution (uK,px) in C^QO, T] x IRn) for the
System (EK), satisfying :

Vte[0,T], | « x | J l .

If the initial data verify in addition :

(5.15)

-u1 (x) , with divM0 =

Po(x) =Po + -iPite) , p0 = Cte , (»!,/>!> e Hs,

they obtain, as we did, estimâtes on derivatives in time of (ux,px).
So, they prove a weak convergence of the solutions (ux,px) to the

solution (w00, /?°°) of incompressible Euler's équations :

jp0(«r+(«œ.v)o = - v ^ ,
V ' |divMco = 0 , uœ(x,Q) = uo(x).

(tins solution living on an intervall [0, T*[, see [10]).
Finally, introducing the supplementary condition :
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they show the following strong convergence's result : there exists X(r0) so
that, for \ ^ \ ( r 0 ) , the System (Ek) with initial data (5.15) has a unie
classical solution (uk,pk) verifying :

They also show a principal part.
Their results and ours were so similar that we decided to study the initial

layer's problem appearing in this case, if we no more suppose :

Div u0 = 0 , but : uo(x) = vo(x) + V<|>0(x) , with div v0 = 0 .

Precisely, we get the :

PROPOSITION : Let us consider the system (Ex) with initial data :

u\x, 0) = vo(x) + \?4>0(x) + l ux(x) ,
A.

divB0 = 0, p\x,O)=po + ^

and s> \ ~ + 1 (n>2) .

Let us suppose in addition that :

v r o < r , v r 6 [ 0 , r 0 ] , |/>

Then, there exists \(T0) > 0, so that :

if n = 2

£ (1 + log (1 + At))
if n = 3

if » = 4
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where (i?x, qx) is the solution o f the waves équation

div vk = o ,

The démonstration of this resuit is exactly the same than the one of
theorem 4 but, in this case, the initial layer's properties are well known. As
a matter of fact, Klainerman proves in [8] the following property, which is
here fundamental :

PROPOSITION : If 4>0 eWhs + n + \we have the following L °° - L1 estimate :

APPENDIX

Our purpose here is to study the decreasing with \ of \Dsvx\ , where
(u\ <7X) is the solution of the following linear System :

The choice of the initial data (vx(x, 0) = V<f>0(;c)), and the regularity of
4>0, permit to write the solution (u\ qx) in the form (V4>x, qK), where the
couple (<|>x, qx) vérifies the following équations :

Po-

ot
= 0

We then obtain the following resuit :

THEOREM : Let us suppose that <\>0eW^k + n + 3 (k e
enough, the following estimâtes are verified :

) . Then, for X large
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i i X / ^ \ i *-'
w i , j t + « + 3 i f n ^ 3 ,

|<t>"(-, Olw«,.*< / C |<t>o|w.,^5 ' ƒ « = 2 •
s / l + M

: Since Whn(Un) <= /f L 2 J (IR"), we also have :

COROLLARY : ƒƒ <}>0 e

[ - i

2 J +2

^•4 + n+4(IR"), /ften:

Remark : If we had chosen initial data under the shape :

vK(x, 0) = vo(x) + V<()0(x) with div u0 = 0 and vo^O,

we couldn't have obtained these basic decreasing of vx results.
As a matter of f act, we would have obtained : vx = w 4- V<t>x, where

4>x is the solution of the system (Dk), and w the solution of the heath
équation :

wt ~v AM> = 0

w being independent of \, there is no more decreasing with X.

Proof of the theorem : The function <|>K being a solution of the system
(Dx), it vérifies the following équation :

, 0) =
Po

To make the calculations simpler, we shall suppose that :

p0 = 1 , v = 2 , yp0 = 1 .

Hence, let us consider 4»x solution of

>x - 2 A<t>x - X2 A<t)x - 0 ,
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We then find that the Fourier Transform in x, <j>\ of <j/ vérifies :

^ , + 2|Ç|24>(
x + X2 |?|24>x = 0 , Ç e R " , ( 6 B + ,

4>X(C, 0) = * o ( 0 - 4>x(C,0) = 2

So we obtain <}>x in the form :

«"•{e-l«l1|i0({)x

So, we shall write :

ICI

x [cos ( r |É | V x 2 - 1 4 | 2 ) - , | € | sin

x [cos (f | 4 | x A 2 - | £ | 2 ) , |€ l sin ( f |Ç | x / x 2 - ICI2)
L v x 2 - |ê |2

x fch ( t \ i \ V | € | 2 - x 2 ) - ;
 | € | sh

L V l l 2 2

= ƒ ! + I2 + / 3 + / 4 .

(i) Majoration of / j :

This term represents, in a way, the « principal » part of 4>x(;t, t). Let us
call 5 the waves equation's semi-group, and K the heat equation's Kernel.
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Then, let us split up Ix :

UI

A _

We recognize in / 5 the following expression : I5 = S(Xt)(K* <j>0).
Thanks to the properties of the solutions of the waves and heat

équations, we deduce from that :

n-\

Remark : In the case where v = 0, that is to say for Euler's équations,
K(x, t) is reduced to intégral 75, and we obtain :

2

We are now going to estimate separatly / 2 + / 6 , ^3 + ^7 and 74.

For that, we shail need the following auxiliary results :

LEMMA :

(A.2) Vwe [ 0 , 1 ] , l - u ^ V l - u ^ 1 - - ;

(A.3) Vw ̂  0 , sin u ^ w , sh u =s w . e u, ch w ̂  e" ;

(AA) VïT^-0, (1 -h ÏT) . e" ^ € exp ( - | - \ .

(ii) Majoration of | / 2 + / 6 1 .

Using the inequalities (A.3) and (A.5), we easily obtain :

f
ui
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that is to say :

(A.5)| /2 + / 6 | ^

(iii) Majoration
We can write :

| / 7 | a s C J \ r,

Cexp(

of\h\

S. ADDED, H

- y ) 14>oIy

+ \h \ -

4.(01 sin -

X

. ADDED

iep
2
. isin-

• ( ' •

' l € | x
2

n-1
2

Kl

Thanks to the lemma, we deduce from that :

where a = m, if m is even, a = m -h 1 if m is odd.
Choosing m = n — 1, we find :

So,

(A.6)
Q

Vi\ ^^t

On the other hand, since |Ç| < \/\< \, we get :

f
So, as above :

(A.7) w-i
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(iv) Majoration of 74.

Thanks to the inequalities (A.2) and (A.3), we have :

What finally gives the following inequality :

(A.8) | / 4 | ===<

(v) At last, let us remark that :

We then easily deduce from (A.l), (A.5), (A.6), (A.7) and (A.8) the
following result :

|4> :
00

In order to estimate the derivatives in x of <|>x, we just have to do the same
work after deriving the linear System (DK).

So the theorem is proven.
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