StÉphane Added
 HÉLÈNE ADDED
 Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome $21, \mathrm{n}^{\circ} 3$ (1987), p. 361-404
http://www.numdam.org/item?id=M2AN_1987__21_3_361_0
© AFCET, 1987, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

ASYMPTOTIC BEHAVIOUR FOR THE SOLUTION OF THE COMPRESSIBLE NAVIER-STOKES EQUATION, WHEN THE COMPRESSIBILITY GOES TO ZERO (*)

by Stéphane Added (${ }^{1}$) et Hélène Added (${ }^{1}$)

Communicated by C. Bardos

Résumé. - Nous étudions le comportement asymptotique des solutions (u^{λ}, p^{λ}) des équations de Navier-Stokes compressibles lorsque la compressibilité tend vers $0(\lambda \rightarrow \infty)$:

$$
\left\{\begin{array}{l}
\rho^{\lambda}\left(u_{t}^{\lambda}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)-v \Delta u^{\lambda}=-\lambda^{2} \nabla p^{\lambda}, \\
p_{t}^{\lambda}+\left(\nabla p^{\lambda}\right) \cdot u^{\lambda}+\gamma p^{\lambda} \operatorname{div} u^{\lambda}=0, \\
u^{\lambda}(x, 0)=u_{0}(x)+\nabla \Phi_{0}(x)+\frac{u_{1}(x)}{\lambda}, \operatorname{div} u_{0}=0, \\
p^{\lambda}(x, 0)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}}, p_{0}=\operatorname{Cte}, \text { où } p=A \rho^{\gamma} \text { avec } \gamma>1 \text { et } A>0 .
\end{array}\right.
$$

Nous établissons d'abord l'existence globale en temps des solutions (u^{λ}, p^{λ}), les estimations obtenues étant uniformes en λ.

Lorsque $\Phi_{0}=0$, nous prouvons que u^{λ} converge fortement vers u^{∞}, solution des équations de Navier-Stokes incompressibles suivantes :

$$
\left\{\begin{array}{l}
\rho_{0}\left(u_{t}^{\infty}+\left(u^{\infty} \cdot \nabla\right) u^{\infty}\right)-v \Delta u^{\infty}=-\nabla p^{\infty}, \\
\operatorname{div} u^{\infty}=0 \quad \text { et } \quad u^{\infty}(x, 0)=u_{0}(x)
\end{array}\right.
$$

Lorsque $\Phi_{0} \neq 0$, nous mettons en évidence un phénomène de couche initiale. Plus précisément, nous prouvons que $u^{\lambda}-u^{\infty}-v^{\lambda}$ converge fortement vers 0 , où v^{λ} est la solution de l'équation couplée suivante:

$$
\left\{\begin{array}{l}
\rho_{0} v_{t}^{\lambda}-v \Delta v^{\lambda}+\lambda \nabla q^{\lambda}=0, \\
q_{t}^{\lambda}+\lambda \gamma p_{0} \operatorname{div} v^{\lambda}=0, \\
v^{\lambda}(x, 0)=\nabla \Phi_{0}(x), \quad q^{\lambda}(x, 0)=0
\end{array}\right.
$$

Abstract. - We study the asymptotic behaviour of the solutions (u^{λ}, p^{λ}) of compressible Navier-Stokes' equations when compressibility goes to zero $(\lambda \rightarrow+\infty)$:
(*) Received in March 1986.
(${ }^{1}$) École Normale Supérieure, Centre de Mathématiques, 45, rue d'Ulm, 75230 Paris Cedex 05
M^{2} AN Modélisation mathématique et Analyse numérique 0399-0516/87/03/361/44/\$6.40
Mathematical Modelling and Numerical Analysis © AFCET Gauthier-Villars

$$
\left\{\begin{array}{l}
\rho^{\lambda}\left(u_{t}^{\lambda}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)-v \Delta u^{\lambda}=-\lambda^{2} \nabla p^{\lambda} \\
p_{t}^{\lambda}+\left(\nabla p^{\lambda}\right) \cdot u^{\lambda}+\gamma p^{\lambda} \operatorname{div} u^{\lambda}=0, \\
u^{\lambda}(x, 0)=u_{0}(x)+\nabla \Phi_{0}(x)+\frac{u_{1}(x)}{\lambda}, \operatorname{div} u_{0}=0, \\
p^{\lambda}(x, 0)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}}, p_{0}=\operatorname{Cte}, p=A \rho^{\gamma} \text { with } \gamma>1 \text { and } A>0 .
\end{array}\right.
$$

We first establish global existence in time of the solutions $\left(u^{\lambda}, p^{\lambda}\right)$, the obtained estimates being uniform in λ.

When $\Phi_{0}=0$, we prove that u^{λ} strongly converges to u^{∞}, solution of the following NavierStokes' incompressible equations :

$$
\left\{\begin{array}{l}
\rho_{0}\left(u_{t}^{\infty}+\left(u^{\infty} \cdot \nabla\right) u^{\infty}\right)-v \Delta u^{\infty}=-\nabla p^{\infty} \\
\operatorname{div} u^{\infty}=0 \text { et } u^{\infty}(x, 0)=u_{0}(x)
\end{array}\right.
$$

When $\Phi_{0} \neq 0$, an initial layer phenomenon arises.
More precisely, we prove that $u^{\lambda}-u^{\infty}-v^{\lambda}$ strongly converges to zero, where v^{λ} is the solution of the following coupled equation :

$$
\left\{\begin{array}{l}
\rho_{0} v_{t}^{\lambda}-v \Delta v^{\lambda}+\lambda \nabla q^{\lambda}=0 \\
q_{t}^{\lambda}+\lambda \gamma p_{0} \operatorname{div} v^{\lambda}=0, \\
v^{\lambda}(x, 0)=\nabla \Phi_{0}(x), \quad q^{\lambda}(x, 0)=0
\end{array}\right.
$$

I. INTRODUCTION

Our aim, in this paper, is to study the solutions of the equations of gases' dynamic :

$$
\left\{\begin{array}{l}
\rho\left(\frac{\partial u}{\partial t}+(u \cdot \nabla) u\right)-v \Delta u=-\nabla p, \quad v>0 \tag{S}\\
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho u)=0, \quad x \in \Omega \in \mathbb{R}^{n}, \quad t \in \mathbb{R}^{+} \\
u(x, 0)=u_{0}(x), \quad \rho(x, 0)=\rho_{0}(x)
\end{array}\right.
$$

where the velocity u and the density ρ are unknown, the pression p being a given function of ρ.

Klainerman and Majda in [1] have proved the local existence of a smooth solution (u, ρ) of the system (S) in the case where Ω is the torus T^{n} of \mathbb{R}^{n}. In [2], they show the local existence of a smooth solution of compressible Euler's equations (when $v=0$) for the whole space \mathbb{R}^{n}.

On the other part, Nishida and Matsumura, in [3], have obtained a global in time result for the system (S) coupled with an evolution equation for the temperature. In their work, they consider the case where $\Omega=\mathbb{R}^{3}$, where the gas is perfect and polytropic, and they are led to impose to the initial data to be small enough in $H^{3}\left(\mathbb{R}^{3}\right)$ norm.

As far as we are concerned, we are going to study the compressible system (S) when compressibility goes to 0 , for the whole space \mathbb{R}^{n}, in any dimension $n \geqslant 2$.

Let us consider ρ as a function of p.
A. Lagha, in [4], defines compressibility as the quantity :

$$
\varepsilon=\left[\frac{\partial p}{\partial \rho}\left(\rho_{0}\right)\right]^{-1}
$$

where ρ_{0} represents a first approximation of the gases' density.
She obtains a relation of the shape :

$$
\rho=\rho_{0}+\varepsilon p
$$

which leads her to study the following perturbed system :

$$
\left(S^{\varepsilon}\right)\left\{\begin{array}{l}
\rho^{\varepsilon}\left(\frac{\partial u^{\varepsilon}}{\partial t}+\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}\right)-v \Delta u^{\varepsilon}=-\nabla p^{\varepsilon}, \quad x \in \mathbb{R}^{n} \\
\varepsilon \frac{\partial p^{\varepsilon}}{\partial t}+\varepsilon u^{\varepsilon} \cdot \nabla p^{\varepsilon}+\rho^{\varepsilon} \nabla u^{\varepsilon}=0, \quad t \in \mathbb{R}^{+}, \\
u^{\varepsilon}(x, 0)=u_{0}(x), \quad p^{\varepsilon}(x, 0)=p_{0}(x)
\end{array}\right.
$$

Temam uses the same definition of compressibility in [5], but he works in a bounded open set Ω of \mathbb{R}^{n}.

On the other hand, Majda, in [6], takes a more physical definition of compressibility by considering the state equation of a perfect gas :

$$
p=A \rho^{\gamma}, \quad \gamma>1
$$

From the initial system :

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho u)=0 \\
\rho\left(\frac{\partial u}{\partial t}+u \cdot \nabla u\right)+\nabla p=0 \\
\rho(x, 0)=\rho_{0}(x), \quad u(x, 0)=u_{0}(x)
\end{array}\right.
$$

he is led to consider the following perturbed system :

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{\rho}}{\partial t^{\prime}}+\operatorname{div}(\tilde{\rho} \tilde{u})=0 \\
\tilde{\rho}\left(\frac{\partial \tilde{u}}{\partial t^{\prime}}+(\tilde{u} \cdot \nabla) \tilde{u}\right)+\lambda^{2} \nabla p(\tilde{\rho})=0 \\
\tilde{\rho}(x, 0)=\frac{\rho_{0}(x)}{\rho_{m}}, \quad \tilde{u}(x, 0)=\frac{u_{0}(x)}{\left|u_{m}\right|},
\end{array}\right.
$$

vol. 21, $\mathrm{n}^{\circ} 3,1987$
where

$$
\begin{gathered}
\tilde{\boldsymbol{\rho}}=\frac{\rho}{\rho_{m}}, \quad \tilde{u}=\frac{u}{\left|u_{m}\right|}, \quad t^{\prime}=\left|u_{m}\right| t \\
\rho_{m}=\max \rho_{0}(x) \quad \text { and } \quad\left|u_{m}\right|=\max \left|u_{0}(x)\right|
\end{gathered}
$$

The compressibility is there given by $1 / \lambda^{2}$, with

$$
\lambda^{2}=\left[\frac{\partial p}{\partial \rho}\left(\rho_{m}\right) /\left|u_{m}\right|^{2}\right](\gamma A)^{-1}
$$

Majda proves, for «small enough » initial data, the existence of a smooth solution for the system $\left(S^{\lambda}\right)$, when λ is sufficiently large.

We have choosed to use this last definition of compressibility, while keeping the viscosity term : $-v \Delta u$.

This led us to consider a perturbed system, between those studied by A. Lagha and Majda, of the shape :

$$
\left\{\begin{array}{l}
\rho^{\lambda}\left(\frac{\partial u^{\lambda}}{\partial t}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)-v \Delta u^{\lambda}=-\lambda^{2} \nabla p^{\lambda} \\
\frac{\partial p^{\lambda}}{\partial t}+\left(\nabla p^{\lambda}\right) \cdot u^{\lambda}+\gamma p^{\lambda} \operatorname{div} u^{\lambda}=0 \\
u^{\lambda}(x, 0)=u_{0}(x)+\frac{u_{1}(x)}{\lambda}, \quad p^{\lambda}(x, 0)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}}, \quad p_{0}=\text { Cte } .
\end{array}\right.
$$

The shape of $u^{\lambda}(x, 0)=u_{0}^{\lambda}(x)$ and $p^{\lambda}(x, 0)=p_{0}^{\lambda}(x)$ issues from a formal asymptotic development (see [6]).

In the paragraph II, we have followed Lagha's way of proceeding which was taking its inspiration from Nishida and Matsumura's technics.

We introduce

$$
E^{\lambda}(t)=\left|u^{\lambda}(t)\right|_{H^{s}}^{2}+\left|\lambda\left(p^{\lambda}-p_{0}\right)\right|_{H^{s}}^{2} \quad \text { where } \quad s>\left[\frac{n}{2}\right]+1
$$

and we prove that, for sufficiently large λ and for «small enough » initial data, there exists some constant K_{0}, independent of λ, so that :

$$
\forall t \in \mathbb{R}^{+}, \quad E^{\lambda}(t)+\int_{0}^{t}\left|\nabla u^{\lambda}(\tau)\right|_{H^{s}}^{2} d \tau+\int_{0}^{t}\left|\lambda \nabla\left(p^{\lambda}-p_{0}\right)\right|_{H^{s-1}}^{2} d \tau \leqslant K_{0}
$$

This result permits to conclude, in any dimension $n \geqslant 2$, that there exists a unic smooth global solution of the system $\left(S^{\lambda}\right)$, for small enough initial data :

$$
\begin{gathered}
u^{\lambda} \in C_{B}\left(0, \infty, H^{s}\right) \cap C_{B}^{1}\left(0, \infty, H^{s-2}\right) \\
\left(p^{\lambda}-p_{0}\right) \in C_{B}\left(0, \infty, H^{s}\right) \cap C_{B}^{1}\left(0, \infty, H^{s-1}\right), \quad \text { where } s>\left[\frac{n}{2}\right]+1
\end{gathered}
$$

In the following part of our work, we study the asymptotic behaviour of the solutions (u^{λ}, p^{λ}) of the system (S^{λ}) when the compressibility goes to zero, so when λ goes to infinity.

In paragraph III, we add the classical following hypothesis :

$$
\operatorname{div} u_{0}=0
$$

and we study the convergence of the solutions (u^{λ}, p^{λ}) to the solution (u^{∞}, p^{∞}) of the incompressible Navier-Stokes equations :
$\left(S^{\infty}\right)\left\{\begin{array}{l}\rho_{0}\left(\frac{\partial u^{\infty}}{\partial t}+\left(u^{\infty} \cdot \nabla\right) u^{\infty}\right)-v \Delta u^{\infty}=-\nabla p^{\infty}, \\ \operatorname{div} u^{\infty}=0, \quad u^{\infty}(x, 0)=u_{0}(x) .\end{array}\right.$
We first obtain supplementary estimates concerning the time derivatives, independent of λ sufficiently large :

$$
\forall t \in \mathbb{R}^{+}, \quad\left|u_{t}^{\lambda}\right|_{H^{s-2}}^{2}+\left|\lambda\left(p^{\lambda}-p_{0}\right)_{t}\right|_{H^{s-2}}^{2}+\int_{0}^{t}\left|\nabla u_{t}^{\lambda}\right|_{H^{s-2}}^{2} d \tau \leqslant M(t),
$$

where

$$
s>\left[\frac{n}{2}\right]+1 \quad \text { and } \quad M(t) \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right) .
$$

This leads us to state the following weak convergence result, obtained by Klainerman and Majda in the case of the torus of \mathbb{R}^{n} and by A. Lagha in \mathbb{R}^{2} :

If $\Omega=\mathbb{R}^{n}$, with $n \geqslant 2$, then

$$
\begin{aligned}
& u^{\lambda} \rightarrow u^{\infty} \quad \text { in } \quad C_{\mathrm{loc}}\left(0, \infty, H_{\mathrm{loc}}^{s-1}\right) \text { strongly }, \\
& \lambda^{2} \nabla p^{\lambda} \rightarrow \nabla p^{\infty} \text { in } L_{\mathrm{loc}}^{\infty}\left(0, \infty, H^{s-2}\right) \text { weak star (w.s.), } \\
& \rho^{\lambda} \rightarrow \rho_{0} \text { in } C_{B}\left(0, \infty, W^{\infty, s-2}\right) \text { strongly . }
\end{aligned}
$$

However, Klainerman and Majda, in [2], prove the strong convergence of the solutions (u^{λ}, p^{λ}) of compressible Euler's equations:

$$
\left\{\begin{array}{l}
\rho^{\lambda}\left(\frac{\partial u^{\lambda}}{\partial t}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)=-\lambda^{2} \nabla p^{\lambda}, \\
\frac{\partial p^{\lambda}}{\partial t}+\left(\nabla p^{\lambda}\right) \cdot u^{\lambda}+\gamma p^{\lambda} \operatorname{div} u^{\lambda}=0, \\
u^{\lambda}(x, 0)=u_{0}(x)+\frac{u_{1}(x)}{\lambda}, \quad p^{\lambda}(x, 0)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}} \\
p_{0}=\text { Cte }, \operatorname{div} u_{0}=0,
\end{array}\right.
$$

vol. $21, \mathrm{n}^{\circ} 3,1987$
to the solution $\left(u^{\infty}, p^{\infty}\right)$ of incompressible Euler's equations:

$$
\left\{\begin{array}{l}
\rho_{0}\left(\frac{\partial u^{\infty}}{\partial t}+\left(u^{\infty} \cdot \nabla\right) u^{\infty}\right)=-\nabla p^{\infty} \\
\operatorname{div} u^{\infty}=0, \quad u^{\infty}(x, 0)=u_{0}(x)
\end{array}\right.
$$

by imposing supplementary conditions to $\left|p^{\infty}\right|_{L^{2}}$ and $\left|p_{t}^{\infty}\right|_{L^{2}}$
(It is, of course, a convergence on a finite time intervall.)
In paragraph IV, we take our inspiration from that technic. We impose to the solution $\left(u^{\infty}, p^{\infty}\right)$ of the system $\left(S^{\infty}\right)$ to verifie the following hypothesis :

$$
\text { (H) } \quad\left|p^{\infty}\right|_{L^{2}}+\left|p_{t}^{\infty}\right|_{L^{2}} \leqslant N(t), \quad \text { where } \quad N \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)
$$

Then, when the initial data $\left(u_{0}^{\lambda}, p_{0}^{\lambda}-p_{0}\right)$ are in $H^{s+2}\left(\mathbb{R}^{n}\right)$, we prove that there exists a locally bounded function $M(t)$ so that :

$$
\begin{aligned}
& \forall t \in \mathbb{R}^{+}, \quad \forall \lambda \geqslant \lambda_{0} \\
& \lambda^{2}\left|u^{\lambda}-u^{\infty}\right|_{H^{s}}^{2}+\left|\lambda^{2}\left(p^{\lambda}-p_{0}\right)-p^{\infty}\right|_{H^{s}}^{2}+\lambda^{2} \int_{0}^{t}\left|\nabla\left(u^{\lambda}-u^{\infty}\right)\right|_{H^{s}}^{2} d \tau \leqslant M(t)
\end{aligned}
$$

In paragraph V , we have studied what happens with the convergence of $\left(u^{\lambda}, p^{\lambda}\right)$ to $\left(u^{\infty}, p^{\infty}\right)$ when we cut out the fundamental hypothesis: $\operatorname{div} u_{0}=0$. So we consider the initial data with the following more general shape :

$$
\begin{aligned}
& u_{0}^{\lambda}(x)=u_{0}(x)+\nabla \Phi_{0}(x)+\frac{u_{1}(x)}{\lambda}, \quad \text { with } \operatorname{div} u_{0}=0 \\
& p_{0}^{\lambda}(x)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}}, \quad p_{0}=\text { Cte } .
\end{aligned}
$$

In fact, an initial layer phenomenon appears.
A fitting corrector term is given by the solution $\left(v^{\lambda}, q^{\lambda}\right)$ of the following system (C^{λ}) :

$$
\left(C^{\lambda}\right)\left\{\begin{array}{l}
\rho_{0} \frac{\partial v^{\lambda}}{\partial t}-v \Delta v^{\lambda}=-\lambda \nabla q^{\lambda} \\
\frac{\partial q^{\lambda}}{\partial t}+\lambda \gamma p_{0} \operatorname{div} v^{\lambda}=0 \\
v^{\lambda}(x, 0)=\nabla \Phi_{0}(x), \quad q^{\lambda}(x, 0)=0
\end{array}\right.
$$

We prove, in appendix, that if Φ_{0} is choosen regular enough, then v^{λ} verifies the following inequalities:

$$
\begin{aligned}
& \left|v^{\lambda}(., t)\right|_{L^{\infty}} \leqslant \frac{C}{1+\lambda t} \quad \text { if } n \geqslant 3 \\
& \left|v^{\lambda}(., t)\right|_{L^{\infty}} \leqslant \frac{C}{\sqrt{1+\lambda t}} \quad \text { if } n=2
\end{aligned}
$$

We obtain the following result :
If the solution $\left(u^{\infty}, p^{\infty}\right)$ of the system $\left(S^{\infty}\right)$ satisfies to the hypothesis (H) and if the initial data are regular enough (we'll precise these assumptions later), there exists some locally bounded function $M(t)$ so that, for sufficiently large λ, we have :
$\left|u^{\lambda}-u^{\infty}-v^{\lambda}\right|_{H^{s}}+\left|\lambda\left(p^{\lambda}-p_{0}\right)-q^{\lambda}\right|_{H^{s}} \leqslant \frac{M(t)}{\lambda}(\log (1+\lambda t)+1)$ if $n \geqslant 3$,
$\left|u^{\lambda}-u^{\infty}-v^{\lambda}\right|_{H^{s}}+\left|\lambda\left(p^{\lambda}-p_{0}\right)-q^{\lambda}\right|_{H^{s}} \leqslant \frac{M(t)}{\sqrt{\lambda}}$ if $n=2$.

We then end by a remark concerning an initial layer's phenomenon in the compressible Euler's equations.

Notations :

- $|\cdot|_{L^{p}}$ (or $|\cdot|_{p}$), $|\cdot|_{H^{s}}$ and $|\cdot|_{W^{k, p}}$ will design respectively the norms $L^{p}\left(\mathbb{R}^{n}\right), H^{s}\left(\mathbb{R}^{n}\right)$ and $W^{k, p}\left(\mathbb{R}^{n}\right)$.
- We'll call « C » different numerical constants and « K » different quantities only depending on initial data.
- Finally, $M(t)$ or $N(t)$ will design different increasing functions of $L_{\text {loc }}^{\infty}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$.

II. INDEPENDENT OF $\boldsymbol{\lambda}$ ESTIMATES. GLOBAL EXISTENCE

A. Independent of $\boldsymbol{\lambda}$ estimates

Let us consider the system $\left(S^{\lambda}\right)$:

$$
\begin{align*}
& \rho^{\lambda}\left(u_{t}^{\lambda}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)-v \Delta u^{\lambda}=-\lambda^{2} \nabla p^{\lambda}, \quad x \in \mathbb{R}^{n} \tag{2.1}\\
& p_{t}^{\lambda}+\nabla p^{\lambda} \cdot u^{\lambda}+\gamma p^{\lambda} \operatorname{div} u^{\lambda}=0, \quad t \in \mathbb{R}^{+} \tag{2.2}\\
& u^{\lambda}(x, 0)=u_{0}^{\lambda}(x), \quad p^{\lambda}(x, 0)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}}, p_{0}=\text { Cte } \tag{2.3}
\end{align*}
$$

where $u_{0}^{\lambda} \in H^{s}, \quad p_{0}>0, \quad p_{1} \in H^{s}, \quad s$ being an integer verifying $s>s_{0}=\left[\frac{n}{2}\right]+1$, and where $p=A \rho^{\psi}, \gamma>1$.
vol. $21, \mathrm{n}^{\circ} 3,1987$

Let us note that equation (2.2) may be written :

$$
\begin{equation*}
\rho_{t}^{\lambda}+\operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right)=0 \tag{2.4}
\end{equation*}
$$

We are going to assume «a priori» that (u^{λ}, p^{λ}) satisfies the following $H(K, T)$ hypothesis :

There exists $T>0$ and $K>0$ so that $\left(u^{\lambda}, p^{\lambda}\right)$ is a solution of $\left(S^{\lambda}\right)$ on the intervall $[0, T]$, verifying :

$$
\begin{aligned}
& u^{\lambda} \in C\left([0, T], H^{s}\right) \cap C^{1}\left([0, T], H^{s-2}\right) \\
& p^{\lambda} \in C\left([0, T], H^{s}\right) \cap C^{1}\left([0, T], H^{s-1}\right) \text { and } \\
& \forall t \in[0, T], \quad E^{\lambda}(t) \leqslant K
\end{aligned}
$$

where $E^{\lambda}(t)$ is defined by the relation:

$$
E^{\lambda}(t)=\left|u^{\lambda}(t)\right|_{H^{s}}^{2}+\left|\lambda\left(p^{\lambda}-p_{0}\right)\right|_{H^{s}}^{2}
$$

We are going to prove that, in these conditions, there exists some constant $C_{0}(K)$, independent of T and λ, and there exists $\lambda_{0}>0$, so that : $\forall t \in[0, T], \quad \forall \lambda \geqslant \lambda_{0}$,

$$
E^{\lambda}(t)+\int_{0}^{t}\left|\nabla u^{\lambda}\right|_{H^{s}}^{2} d \tau+\int_{0}^{t}\left|\lambda \nabla\left(p^{\lambda}-p_{0}\right)\right|_{H^{s-1}}^{2} d \tau \leqslant C_{0}(K) \cdot E_{0}^{\lambda}
$$

(where $E_{0}^{\lambda}=E^{\lambda}(0)$).
First, let us make some preliminary remarks which will appreciably simplify the proof.

Let us note

$$
\begin{array}{ll}
\tilde{p}^{\lambda}(x, t)=\lambda\left(p^{\lambda}(x, t)-p_{0}\right) & \text { and } \\
\tilde{\rho}^{\lambda}(x, t)=\lambda\left(\rho^{\lambda}(x, t)-\rho_{0}\right) & \text { where } \quad p_{0}=A \rho_{0}^{\gamma}
\end{array}
$$

Lemma 1 : Under hypothesis $H(K, T)$, and if $\lambda \geqslant \lambda_{1}$, then there exists four strictly positive constants $p_{1}, p_{2}, \rho_{1}, \rho_{2}$, so that:

$$
\begin{aligned}
\forall x \in \mathbb{R}^{n}, \quad \forall t \in[0, T], & 0<p_{1} \leqslant p^{\lambda} \leqslant p_{2} \\
\text { and } & 0<\rho_{1} \leqslant \rho^{\lambda} \leqslant \rho_{2}
\end{aligned}
$$

In fact,

$$
\begin{aligned}
\left|p^{\lambda}-p_{0}\right|_{\infty} & \leqslant\left|p^{\lambda}-p_{0}\right|_{H^{s}} \quad\left(\text { since } \quad s>s_{0}>\frac{n}{2}\right) \\
& \leqslant \frac{\left|\tilde{p}^{\lambda}\right|}{\lambda} H^{s} \leqslant \frac{K}{\lambda}
\end{aligned}
$$

We have just to choose $\lambda_{1}=\frac{2 K}{p_{0}}$, which gives $p_{1}=\frac{p_{0}}{2}, p_{2}=\frac{3 p_{0}}{2}$. Moreover, if $h(\rho)=A \rho^{\gamma}=p^{\lambda}$, then $0<h^{-1}\left(\frac{p_{0}}{2}\right) \leqslant \rho^{\lambda} \leqslant h^{-1}\left(\frac{3 p_{0}}{2}\right)$.

Lemma 2 : There exists two constants C_{1} and C_{2} and $\lambda_{2}=\lambda_{2}(K)$, so that, if $\lambda \geqslant \lambda_{2} \geqslant \lambda_{1}$, we get:

$$
\forall p \in[2,+\infty], \quad C_{1}\left|\tilde{\rho}^{\lambda}\right|_{p} \leqslant\left|\tilde{p}^{\lambda}\right|_{p} \leqslant C_{2}\left|\tilde{\rho}^{\lambda}\right|_{p}
$$

and

$$
C_{1}\left|D \tilde{\rho}^{\lambda}\right|_{p} \leqslant\left|D \tilde{p}^{\lambda}\right|_{p} \leqslant C_{2}\left|D \tilde{\rho}^{\lambda}\right|_{p} .
$$

Let us note $k=h^{-1}$. Then there exists $p_{\theta} \in\left[p_{0}, p^{\lambda}\right]$, so that :

$$
\tilde{\rho}^{\lambda}=\lambda\left[k\left(p^{\lambda}\right)-k\left(p_{0}\right)\right]=\lambda\left(p^{\lambda}-p_{0}\right) \cdot k^{\prime}\left(p_{0}\right)+\frac{\lambda}{2}\left(p^{\lambda}-p_{0}\right)^{2} \cdot k^{\prime \prime}\left(p_{\theta}\right) .
$$

Then,

$$
\left|\tilde{\rho}^{\lambda}-k^{\prime}\left(p_{0}\right) \tilde{p}^{\lambda}\right|_{p} \leqslant \frac{1}{2 \lambda}\left|\tilde{p}^{\lambda}\right|_{p}\left|\tilde{p}^{\lambda}\right|_{\infty}\left|k^{\prime \prime}\left(p_{\theta}\right)\right|_{\infty} \leqslant \frac{C}{\lambda}\left|\tilde{p}^{\lambda}\right|_{p}
$$

So, for large enough $\lambda,\left|\tilde{\rho}^{\lambda}\right|_{p}$ and $\left|\tilde{p}^{\lambda}\right|_{p}$ are comparable.
Moreover, $D \tilde{\rho}^{\lambda}=k^{\prime}\left(p^{\lambda}\right) . D \tilde{p}^{\lambda} ; k$ and all its derivatives being locally bounded on \mathbb{R}_{+}^{*}, we may conclude with lemma 1.

LEMMA 3 :
(i) $D^{s} \tilde{\rho}^{\lambda}$ may be written:

$$
D^{s} \tilde{\rho}^{\lambda}=k^{\prime}\left(p^{\lambda}\right) \cdot D^{s} \tilde{p}^{\lambda}+\frac{\chi}{\lambda} \quad \text { where } \quad|\chi|_{L^{2}} \leqslant C\left|\nabla \tilde{p}^{\lambda}\right|_{H^{s-1}}
$$

In particular, $\left|D \tilde{\rho}^{\lambda}\right|_{H^{s-1}}$ and $\left|D \tilde{p}^{\lambda}\right|_{H^{s-1}}$ are comparable as soon as λ is sufficiently large, $\lambda \geqslant \lambda_{3} \geqslant \lambda_{2}$.
(ii) $\left|D^{s-1}\left(\frac{1}{\rho^{\lambda}}\right)\right|_{L^{2}} \leqslant \frac{C}{\lambda}$, as soon as λ is large enough.

Proof:
(i)

$$
\begin{aligned}
& D^{s} \tilde{\rho}^{\lambda}=k^{\prime}\left(p^{\lambda}\right) D^{s}\left(\tilde{p}^{\lambda}\right)+ \\
&+\sum_{\chi / \lambda}^{\sum_{p=2}^{s} \sum_{\substack{i_{1}+\cdots+i_{s}=p \\
i_{1}+2 i_{2}+\cdots+(s-1) i_{s-1}=s}} C_{i_{\rho}, p}\left(D \tilde{p}^{\lambda}\right)^{i_{1}} \ldots\left(D^{s-1} \tilde{p}^{\lambda}\right)^{i_{s-1}} \frac{k^{(p)}\left(p^{\lambda}\right)}{\lambda^{p-1}}} .
\end{aligned}
$$

vol. $21, \mathrm{n}^{\circ} 3,1987$

If $\lambda \geqslant \max \left(K^{2}, 1\right)$, we deduce from hypothesis $H(K, T)$ that $|x|_{L^{2}} \leqslant C\left|\nabla \tilde{p}^{\lambda}\right|_{H^{s-1}}$. Then, since $0<k^{\prime}\left(p_{2}\right) \leqslant k^{\prime}\left(p^{\lambda}\right) \leqslant k^{\prime}\left(p_{1}\right)$, we get that $\left|D \tilde{\rho}^{\lambda}\right|_{H^{s-1}}$ and $\left|D \tilde{p}^{\lambda}\right|_{H^{s-1}}$ are comparable.
(ii) We just have to note that if $\phi(x)=x^{-1}$, then :

$$
D^{s-1}\left(\frac{1}{\rho^{\lambda}}\right)=\sum_{p=1}^{s-1} \sum_{\substack{i_{1}+\cdots+i_{s-1}=p \\ i_{1}+\cdots+(s-1) i_{s-1}=s-1}} C_{i_{\rho}, p}\left(D \tilde{\rho}^{\lambda}\right)^{i_{1}} \ldots\left(D^{s-1} \tilde{\rho}^{\lambda}\right)^{i_{s-1}} \frac{\phi^{(p)}\left(\rho^{\lambda}\right)}{\lambda^{p}} .
$$

We end with the assumption $H(K, T)$.
Lemma 4: If u, v and w are smooth functions,

$$
\int(v \cdot \nabla) u \cdot w d x=-\int(v \cdot \nabla) w \cdot u d x-\int(u \cdot w) \operatorname{div} v d x
$$

In particular,

$$
\int(v . \nabla) u \cdot u d x=-\frac{1}{2} \int|u|^{2} \operatorname{div} v d x .
$$

Lemma 5 [7]: Let f and g be two smooth functions

$$
\begin{align*}
& \text { (2.5) }\left|D^{k}(f g)-f D^{k} g\right|_{p} \leqslant C|D f|_{r}\left|D^{k-1} g\right|_{r^{\prime}}+C\left|D^{k} f\right|_{s}|g|_{s^{\prime}} \tag{2.5}\\
& \text { (2.6) }\left|D^{k}(f g)\right|_{p} \leqslant C|f|_{r}\left|D^{k} g\right|_{r^{\prime}}+C\left|D^{k} f\right|_{s}|g|_{s^{\prime}}
\end{align*}
$$

where

$$
k>0, p \in[1,+\infty] \text { and } \frac{1}{p}=\frac{1}{r}+\frac{1}{r^{\prime}}=\frac{1}{s}+\frac{1}{s^{\prime}}
$$

We are now able to establish the desired «a priori» estimates.
First step : L^{2}-Norms of u^{λ} and p^{λ}.
Multiplying (2.1) by u^{λ}, and (2.4) by $\frac{\left|u^{\lambda}\right|^{2}}{2}$, we get :

$$
\begin{aligned}
\frac{\left|u^{\lambda}\right|^{2}}{2} \rho_{t}^{\lambda}+\frac{\left|u^{\lambda}\right|^{2}}{2} \operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right) & +\frac{\rho^{\lambda}}{2}\left|u^{\lambda}\right|_{t}^{2}+ \\
& +\left(\rho^{\lambda} u^{\lambda} \nabla\right) u^{\lambda} \cdot u^{\lambda}-v \Delta u^{\lambda} \cdot u^{\lambda}=-\lambda \nabla \tilde{p}^{\lambda} \cdot u^{\lambda}
\end{aligned}
$$

Then, integrating on \mathbb{R}^{n} :

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int \frac{\rho^{\lambda}\left|u^{\lambda}\right|^{2}}{2}+v \int\left|\nabla u^{\lambda}\right|^{2}+\int\left(\rho^{\lambda} u^{\lambda} \nabla\right) u^{\lambda} \cdot u^{\lambda}+ \\
& \\
& \quad+\int \frac{\left|u^{\lambda}\right|^{2}}{2} \operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right)=\lambda \int \tilde{p}^{\lambda} \operatorname{div} u^{\lambda}
\end{aligned}
$$

\mathbf{M}^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

We deduce from lemma 4 that :

$$
\begin{equation*}
\frac{\partial}{\partial t} \int \frac{\rho^{\lambda}\left|u^{\lambda}\right|^{2}}{2} d x+v \int\left|\nabla u^{\lambda}\right|^{2} d x=\lambda \int\left(\tilde{p}^{\lambda} \operatorname{div} u^{\lambda}\right) d x \tag{2.7}
\end{equation*}
$$

Let us introduce

$$
W\left(\rho^{\lambda}\right)=\int_{\rho_{0}}^{\rho^{\lambda}} \frac{\lambda \tilde{p}^{\lambda}(s)}{s^{2}} d s
$$

Multiplying (2.4) by $\frac{\partial}{\partial \rho}\left(\rho^{\lambda} W\right)$, we get :

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int \rho^{\lambda} W d x+\int \operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right) W d x+ \\
& \quad+\int\left(\rho^{\lambda}\right)^{2} \operatorname{div} u^{\lambda} \frac{\partial W}{\partial \rho} d x+\int \rho^{\lambda} u^{\lambda} \cdot \nabla \rho^{\lambda} \frac{\partial W}{\partial \rho} d x=0
\end{aligned}
$$

Now,

$$
\int \operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right) W d x=-\int \rho^{\lambda} u^{\lambda} \cdot \nabla W d x=-\int \rho^{\lambda} u^{\lambda} \cdot \nabla \rho^{\lambda} \frac{\partial W}{\partial \rho} d x
$$

and

$$
\int\left(\rho^{\lambda}\right)^{2} \operatorname{div} u^{\lambda} \frac{\partial W}{\partial \rho} d x=\lambda \int \tilde{p}^{\lambda} \operatorname{div} u^{\lambda} d x
$$

what gives us:

$$
\begin{equation*}
\frac{\partial}{\partial t} \int \rho^{\lambda} W d x+\lambda \int \tilde{p}^{\lambda} \operatorname{div} u^{\lambda} d x=0 \tag{2.8}
\end{equation*}
$$

We then can deduce from (2.7) and (2.8) that :

$$
\frac{\partial}{\partial t}\left[\int \rho^{\lambda} W d x+\int \rho^{\lambda} \frac{\left|u^{\lambda}\right|^{2}}{2} d x\right]+v \int\left|\nabla u^{\lambda}\right|^{2} d x=0
$$

and thanks to lemma 1 :

$$
\int \rho^{\lambda} W d x+\frac{\rho_{1}}{2}\left|u^{\lambda}(t)\right|_{2}^{2}+v \int_{0}^{t}\left|\nabla u^{\lambda}\right|_{2}^{2} d \tau \leqslant \int\left|\rho^{\lambda} W(0)\right| d x+\frac{\rho_{2}}{2}\left|u_{0}^{\lambda}\right|_{2}^{2}
$$

So we have to estimate $\int \rho^{\lambda} W d x$.
(i) Minoration: Let us consider

$$
\Phi\left(\rho^{\lambda}\right)=\rho^{\lambda} \int_{\rho_{0}}^{\rho^{\lambda}} \frac{\lambda \tilde{p}^{\lambda}(s)}{s^{2}} d s
$$

The shape of Φ gives immediatly :

$$
\Phi\left(\rho_{0}\right)=\Phi^{\prime}\left(\rho_{0}\right)=0 \quad \text { and } \quad \Phi^{\prime \prime}\left(\rho_{0}\right)=A \lambda^{2} \gamma \rho_{0}^{\gamma-2}
$$

and

$$
\Phi^{\prime \prime \prime}(\rho)=A \gamma(\gamma-2) \lambda^{2} \rho^{\gamma-3}
$$

So $\quad \Phi\left(\rho^{\lambda}\right)=\frac{A}{2}\left(\rho^{\lambda}-\rho_{0}\right)^{2} \lambda^{2} \gamma \rho_{0}^{\gamma-2}+\frac{A}{6} \gamma(\gamma-2) \lambda^{2}\left(\rho^{\lambda}-\rho_{0}\right)^{3} \rho_{\theta}^{\gamma-3}$

$$
=\left(\tilde{\rho}^{\lambda}\right)^{2}\left[\frac{A}{2} \gamma \rho_{0}^{\gamma-2}+\frac{A}{6 \chi} \gamma(\gamma-2) \tilde{\rho}^{\lambda} \cdot \rho_{\theta}^{\gamma-3}\right],
$$

with $\rho_{\theta}=\rho_{0}+\theta\left(\rho^{\lambda}-\rho_{0}\right), \theta \in[0,1]$.
Now,

$$
\left|\frac{A}{6 \lambda} \gamma(\gamma-2) \tilde{\rho}^{\lambda} \cdot \rho_{\theta}^{\gamma-3}\right|_{\infty} \leqslant \frac{A}{6 \lambda} \gamma(\gamma-2) K \rho_{2}^{\gamma-3} \leqslant \frac{C K}{\lambda} .
$$

Since $C=\frac{A}{2} \gamma \rho_{0}^{\gamma-2}>0$, we get that : for λ large enough, $\lambda \geqslant \lambda_{4}(K) \geqslant \lambda_{3}$, we have:

$$
\int \Phi\left(\rho^{\lambda}\right) d x \geqslant \frac{C}{2}\left|\tilde{\rho}^{\lambda}\right|_{2}^{2} \geqslant \frac{C}{2} C_{1}\left|\tilde{p}^{\lambda}\right|_{2}^{2}
$$

(ii) Majoration :

Since $\tilde{p}^{\lambda}(s)=\lambda A\left(s^{\gamma}-\rho_{0}^{\gamma}\right)$, then $\operatorname{Sup}\left|\tilde{p}^{\lambda}(s)\right|=\left|\tilde{p}^{\lambda}\left(\rho^{\lambda}\right)\right|$.

$$
\left[p_{0}, \rho^{\lambda}\right]
$$

Then

$$
\begin{aligned}
\int\left|\rho^{\lambda} \int_{\rho_{0}}^{\rho^{\lambda}} \frac{\lambda \tilde{p}^{\lambda}(s)}{s^{2}}\right| d x & \leqslant \int \rho^{\lambda} \lambda\left|\tilde{p}^{\lambda}\left(\rho^{\lambda}\right)\right|\left|\int_{\rho_{0}}^{\rho^{\lambda}} \frac{d s}{s^{2}}\right| d x \\
& \leqslant \int \rho^{\lambda} \lambda\left|\tilde{p}^{\lambda}\right| \frac{\left|\rho^{\lambda}-\rho_{0}\right|}{\rho^{\lambda} \rho_{0}} d x \leqslant \frac{1}{\rho_{0}} \int\left|\tilde{\rho}^{\lambda}\right|\left|\tilde{p}^{\lambda}\right| d x
\end{aligned}
$$

So, thanks to lemma 2, we get that :

$$
\int\left|\rho^{\lambda} W\right| d x \leqslant \frac{C_{2}}{\rho_{0}}\left|\tilde{p}^{\lambda}\right|_{2}^{2}=C\left|\tilde{p}^{\lambda}\right|_{2}^{2}
$$

Finally, we conclude that :
Under hypothesis $H(K, T)$, there exists $\lambda_{4}=\lambda_{4}(K)$, and some constant C, independent of T, λ and K, so that, $\forall t \in[0, T], \quad \forall \lambda \geqslant \lambda_{4}$, we have:

$$
\begin{equation*}
\left|u^{\lambda}\right|_{2}^{2}+\left|\tilde{p}^{\lambda}\right|_{2}^{2}+\left|\tilde{\rho}^{\lambda}\right|_{2}^{2}+v \int_{0}^{t}\left|\nabla u^{\lambda}\right|_{2}^{2} d \tau \leqslant C \cdot E_{0}^{\lambda} \tag{2.9}
\end{equation*}
$$

where $E_{0}^{\lambda}=\left|u_{0}^{\lambda}\right|_{H^{s}}^{2}+\left|\tilde{p}_{0}^{\lambda}\right|_{H^{s}}^{2}$ and $\tilde{p}_{0}^{\lambda}(x)=\lambda\left(p^{\lambda}(x, 0)-p_{0}\right)$.
2nd Step : Estimate of $\int_{0}^{t}\left|D \tilde{p}^{\lambda}\right|_{2}^{2} d \tau$.
Multiplying equation (2.1) by $-\frac{\nabla \tilde{\rho}^{\lambda}}{\lambda \rho^{\lambda}}$, and integrating in time and on \mathbb{R}^{n}, we get :

$$
\begin{aligned}
\int_{0}^{t} \int \frac{\nabla \tilde{\rho}^{\lambda} \cdot \nabla \tilde{p}^{\lambda}}{\rho^{\lambda}} d x d \tau= & -\int_{0}^{t} \int u_{t}^{\lambda} \frac{\nabla \tilde{\rho}^{\lambda}}{\lambda} d x d \tau-\int_{0}^{t} \int \frac{\left(u^{\lambda} \cdot \nabla\right) u^{\lambda} \cdot \nabla \tilde{\rho}^{\lambda}}{\lambda} d x d \tau \\
& +\nu \int_{0}^{t} \int \frac{\Delta u^{\lambda} \cdot \nabla \tilde{\rho}^{\lambda}}{\lambda \rho^{\lambda}} d x d \tau
\end{aligned}
$$

Now

$$
\begin{aligned}
\int_{0}^{t} \int u_{t}^{\lambda} \frac{\nabla \tilde{\rho}^{\lambda}}{\lambda} d x d \tau & =\left[\int u^{\lambda} \frac{\nabla \tilde{\rho}^{\lambda}}{\lambda} d x\right]_{0}^{t}-\int_{0}^{t} \int u^{\lambda} \cdot \nabla \rho_{t}^{\lambda} d x d \tau \\
& =\left[\int u^{\lambda} \frac{\nabla \tilde{\rho}^{\lambda}}{\lambda} d x\right]_{0}^{t}+\int_{0}^{t} \int \operatorname{div} u^{\lambda} \cdot \operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right) d x d \tau
\end{aligned}
$$

Finally,

$$
\begin{aligned}
(a)= & \int_{0}^{t} \int \frac{\nabla \tilde{\rho}^{\lambda} \cdot \nabla \tilde{p}^{\lambda}}{\rho^{\lambda}} d x d \tau \\
= & {\left[\int u^{\lambda} \frac{\nabla \tilde{\rho}^{\lambda}}{\lambda} d x\right]_{0}^{t}+\int_{0}^{t} \int \operatorname{div} u^{\lambda} \cdot \operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right) d x d \tau } \\
& +v \int_{0}^{t} \int \frac{\Delta u^{\lambda} \cdot \nabla \tilde{\rho}^{\lambda}}{\lambda \rho^{\lambda}} d x d \tau-\int_{0}^{t} \int \frac{\left(u^{\lambda} \cdot \nabla\right) u^{\lambda} \cdot \nabla \tilde{\rho}^{\lambda}}{\lambda} d x d \tau \\
= & (b)+(c)+(d)+(e) .
\end{aligned}
$$

(i) We get from lemma 1:

$$
(a)=\int_{0}^{t} \int \frac{\left(\nabla \tilde{p}^{\lambda}\right)^{2}}{\rho^{\lambda}} k^{\prime}\left(p^{\lambda}\right) d x d \tau \geqslant \frac{k^{\prime}\left(p_{2}\right)}{\rho_{1}} \int_{0}^{t}\left|\nabla \tilde{p}^{\lambda}\right|_{2}^{2} d \tau
$$

(ii) $|(b)| \leqslant\left|u^{\lambda}(t)\right|_{2}^{2}+\frac{1}{\lambda^{2}}\left|D \tilde{\rho}^{\lambda}\right|_{2}^{2}+\left|u^{\lambda}(0)\right|_{2}^{2}+\frac{1}{\lambda^{2}}\left|D \tilde{\rho}^{\lambda}(0)\right|_{2}^{2}$

$$
\leqslant C \cdot E_{0}^{\lambda}+\frac{1}{\lambda^{2}}\left|D^{s} \tilde{p}^{\lambda}(t)\right|_{2}^{2} \quad \text { as soon as } \lambda \geqslant \sup \left(\lambda_{4}, 1\right)
$$

(iii) $|(c)+(e)| \leqslant 2 \int_{0}^{t}\left|u^{\lambda}\right|_{\infty}\left|D u^{\lambda}\right|_{2} \frac{\left|D \tilde{\rho}^{\lambda}\right|_{2}}{\lambda} d \tau$

$$
\begin{aligned}
& \leqslant \frac{4 K}{\lambda} \int_{0}^{t}\left|D u^{\lambda}\right|_{2}^{2} d \tau+\frac{1}{\lambda} \int_{0}^{t}\left|D \tilde{\rho}^{\lambda}\right|_{2}^{2} d \tau \quad\left(|u|_{\infty} \leqslant \sqrt{K}\right) \\
& \leqslant \frac{4 K C}{\lambda v} E_{0}^{\lambda}+\frac{1}{\lambda} \int_{0}^{t}\left|D \tilde{\rho}^{\lambda}\right|_{2}^{2} d \tau \quad(\text { by }(2.9))
\end{aligned}
$$

(iv) $|(d)| \leqslant \frac{v^{2}}{\rho_{1}^{2} \lambda} \int_{0}^{t}\left|\nabla \tilde{\rho}^{\lambda}\right|_{2}^{2} d \tau+\frac{1}{\lambda} \int_{0}^{t}\left|D^{2} u^{\lambda}\right|_{2}^{2} d \tau$

$$
\leqslant \frac{v^{2}}{\rho_{1}^{2} \lambda} \int_{0}^{t}\left|\nabla \tilde{\rho}^{\lambda}\right|_{2}^{2} d \tau+\frac{C}{\lambda v} E_{0}^{\lambda}+\frac{1}{\lambda} \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau \quad \text { (by (2.9)) }
$$

We deduce from all above that :

$$
\begin{aligned}
\int_{0}^{t}\left|\nabla \tilde{p}^{\lambda}\right|_{2}^{2} d \tau \leqslant C\left(1+\frac{K}{\lambda}\right) E_{0}^{\lambda}+ & \frac{1}{\lambda^{2}}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+ \\
& +\frac{1}{\lambda} \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau+\frac{C}{\lambda} \int_{0}^{t}\left|\nabla \tilde{p}^{\lambda}\right|_{2}^{2} d \tau
\end{aligned}
$$

We conclude from that :

$$
\begin{align*}
& \text { Under hypothesis } H(K, T) \text {, there exists } \\
& \qquad \lambda_{5}=\lambda_{5}(K) \geqslant \max \left(\lambda_{4}, 1, K\right) \\
& \text { and some constant } C \text {, independent of } \lambda, T \text {, and } K \text { so that, } \\
& \forall t \in[0, T], \quad \forall \lambda \geqslant \lambda_{5}, \tag{2.10}\\
& \int_{0}^{t}\left|\nabla \tilde{p}^{\lambda}(\tau)\right|_{2}^{2} d \tau \leqslant C E_{0}^{\lambda}+\frac{1}{\lambda^{2}}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+\frac{1}{\lambda} \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau .
\end{align*}
$$

The norm $|u|_{H^{s}}$ being equivalent to the norm $\left(|u|_{2}^{2}+\left|D^{s} u\right|_{2}^{2}\right)$, we go straitly to the :

3rd Step : L^{2}-Norm of the derivatives of order s.
Deriving equations (2.1) and (2.2) s times yields to:
(2.12) $\quad \partial^{s} \tilde{p}_{t}^{\lambda}+\partial^{s}\left(\nabla \tilde{p}^{\lambda} \cdot u^{\lambda}\right)+\gamma \partial^{s}\left(\tilde{p}^{\lambda} \operatorname{div} u^{\lambda}\right)+\lambda \gamma p_{0} \partial^{s} \operatorname{div} u^{\lambda}=0$.

The operation

$$
\int\left[(2.11) \cdot \gamma p_{0} \partial^{s} u^{\lambda}+(2.12) \cdot \partial^{s} \tilde{p}^{\lambda}+(2.4) \gamma p_{0} \frac{\left(\partial^{s} u^{\lambda}\right)^{2}}{2}\right] d x
$$

leads to the following equality :

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[\frac{\gamma p_{0}}{2}\left|\sqrt{\rho^{\lambda}} \partial^{s} u^{\lambda}\right|_{2}^{2}+\frac{1}{2}\left|\partial^{s} \tilde{p}^{\lambda}\right|_{2}^{2}\right]+\nu \gamma p_{0}\left|\nabla \partial^{s} u^{\lambda}\right|_{2}^{2}= \\
& =-\gamma p_{0} \int\left[\partial^{s}\left(\rho^{\lambda} u_{t}^{\lambda}\right)-\rho^{\lambda} \partial^{s} u_{t}^{\lambda}\right] \cdot \partial^{s} u^{\lambda} d x- \\
& \quad-\gamma p_{0} \int \partial^{s}\left(\left(\rho^{\lambda} u^{\lambda} \cdot \nabla\right) u^{\lambda}\right) \cdot \partial^{s} u^{\lambda} d x \\
& \quad-\gamma p_{0} \int \operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right) \frac{\left(\partial^{s} u^{\lambda}\right)^{2}}{2} d x-\int\left(\nabla\left(\partial^{s} \tilde{\rho}^{\lambda}\right) \cdot u^{\lambda}\right) \partial^{s} \tilde{\rho}^{\lambda} d x \\
& \quad-\int\left[\partial^{s}\left(\nabla \tilde{p}^{\lambda} \cdot u^{\lambda}\right)-\left(\partial^{s} \nabla \tilde{p}^{\lambda}\right) u^{\lambda}\right] \partial^{s} \tilde{p}^{\lambda} d x-\gamma \int \partial^{s}\left(\tilde{p}^{\lambda} \operatorname{div} u^{\lambda}\right) \partial^{s} \tilde{p}^{\lambda} d x \\
& =(a)+(b)+(c)+(d)+(e)+(f) .
\end{aligned}
$$

(i) Let us estimate (a). Thanks to (2.5), we may write :

$$
\begin{aligned}
|(a)| & \leqslant C\left|D^{s} u^{\lambda}\right|_{2}\left[\left|D \rho^{\lambda}\right|_{\infty}\left|D^{s-1} u_{t}^{\lambda}\right|_{2}+\left|D^{s} \rho^{\lambda}\right|_{2}\left|u_{t}^{\lambda}\right|_{\infty}\right] \\
& \leqslant C\left|D^{s} u^{\lambda}\right|_{2} \frac{\left|D \tilde{\rho}^{\lambda}\right|_{\infty}}{\lambda}\left|D^{s-1} u_{t}^{\lambda}\right|_{2}+C\left|D^{s} u^{\lambda}\right|_{2}\left|D^{s} \tilde{\rho}^{\lambda}\right|_{2} \frac{1}{\lambda}\left|u_{t}^{\lambda}\right|_{\infty}
\end{aligned}
$$

Now (2.1) gives us :

$$
u_{t}^{\lambda}=-\lambda \frac{\nabla \tilde{p}^{\lambda}}{\rho^{\lambda}}+v \frac{\Delta u^{\lambda}}{\rho^{\lambda}}-\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}
$$

Thus

$$
\frac{1}{\lambda}\left|u_{t}^{\lambda}\right|_{\infty} \leqslant \frac{1}{\rho_{1}}\left|D \tilde{p}^{\lambda}\right|_{\infty}+\frac{v}{\rho_{1} \lambda}\left|\Delta u^{\lambda}\right|_{\infty}+\frac{\sqrt{K}}{\lambda}\left|D u^{\lambda}\right|_{\infty}
$$

We now use an inequality due to Gagliardo and Nirenberg [9].
So, with hypothesis $H(K, T)$, we can get that :

$$
\begin{aligned}
\left|D^{s} u^{\lambda}\right|_{2}\left|D^{s} \tilde{\rho}^{\lambda}\right|_{2} \frac{1}{\lambda}\left|u_{t}^{\lambda}\right|_{\infty} & \leqslant \\
& \leqslant C \sqrt{K}\left[\left|D \tilde{p}^{\lambda}\right|_{2}^{2}+\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+\left|D u^{\lambda}\right|_{2}^{2}+\frac{\left|D^{s+1} u^{\lambda}\right|_{2}^{2}}{\lambda}\right]
\end{aligned}
$$

as soon as $\lambda \geqslant \lambda_{5}$.
vol. $21, n^{\circ} 3,1987$

On the other hand,

$$
\begin{aligned}
&\left|D^{s-1} u_{t}^{\lambda}\right|_{2}=\left|D^{s-1} \frac{\rho^{\lambda} u_{t}^{\lambda}}{\rho^{\lambda}}\right|_{2} \leqslant \\
& \leqslant C\left|\rho^{\lambda} u_{t}^{\lambda}\right|_{\infty}\left|D^{s-1} \frac{1}{\rho^{\lambda}}\right|_{2}+C\left|D^{s-1}\left(\rho^{\lambda} u_{t}^{\lambda}\right)\right|_{2} \cdot\left|\frac{1}{\rho^{\lambda}}\right|_{\infty} .
\end{aligned}
$$

We know that (lemma 3 (ii)), as soon as λ is large enough,

$$
\left|D^{s-1} \frac{1}{\rho^{\lambda}}\right|_{2} \leqslant \frac{C}{\lambda} .
$$

Moreover, using assertion (2.5) of lemma 5 and hypothesis $H(K, T)$, we get :

$$
\begin{aligned}
\left|D^{s-1}\left(\rho^{\lambda} u_{t}^{\lambda}\right)\right|_{2} & \leqslant \lambda\left|D^{s} \tilde{p}^{\lambda}\right|_{2}+\nu\left|D^{s+1} u^{\lambda}\right|_{2}+\left|D^{s-1}\left(\rho^{\lambda} u^{\lambda} \cdot \nabla\right) u^{\lambda}\right|_{2} \\
& \leqslant C \lambda\left|D^{s} \tilde{p}^{\lambda}\right|_{2}+C \sqrt{K}\left|D u^{\lambda}\right|_{2}+C \sqrt{K}\left|D^{s+1} u^{\lambda}\right|_{2} .
\end{aligned}
$$

So, when λ is large enough, $\lambda \geqslant \lambda_{6}(K) \geqslant \lambda_{5}$, we have :

$$
\begin{aligned}
& \left|D^{s} u^{\lambda}\right|_{2}\left|D \tilde{p}^{\lambda}\right|_{\infty} \frac{1}{\lambda}\left|D^{s-1} u_{t}^{\lambda}\right|_{2} \leqslant \\
&
\end{aligned} \begin{aligned}
& \leqslant C\left(1+K^{3 / 2}\right)\left[\left|D \tilde{p}^{\lambda}\right|_{2}^{2}+\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+\left|D u^{\lambda}\right|_{2}^{2}+\frac{\left|D^{s+1} u^{\lambda}\right|_{2}^{2}}{\lambda}\right]
\end{aligned}
$$

and (a) verifies the same inequality.
(ii) Thanks to lemma 5 (2.6), lemma 3, and hypothesis $H(K, T)$, we deduce the following estimate for $(b)+(c):(\beta \geqslant 1)$

$$
\begin{aligned}
|(b)+(c)| \leqslant C(1 & \left.+K^{\beta}\right) C(\alpha)\left|D u^{\lambda}\right|_{2}^{2}+ \\
& +\alpha\left|D^{s+1} u^{\lambda}\right|_{2}^{2}+\frac{K}{\lambda}\left(\left|D u^{\lambda}\right|_{2}^{2}+\left|D^{s+1} u^{\lambda}\right|_{2}^{2}+\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}\right)
\end{aligned}
$$

(We also need the inequality :

$$
\begin{aligned}
\left|D^{s+1} u\right|_{2}\left|D^{s} u\right|_{2} \leqslant C|D u|_{2}^{1-a}\left|D^{s+1} u\right|_{2}^{a+1} & \leqslant \\
& \left.\leqslant C(\alpha)|D u|_{2}^{2}+\alpha\left|D^{s+1} u\right|_{2}^{2}\right)
\end{aligned}
$$

(iii) For (d), we just have to write :

$$
\left|\int\left(\nabla \partial^{s} \tilde{p}^{\lambda} \cdot u^{\lambda}\right) \partial^{s} \tilde{p}^{\lambda} d x\right|=\left|-\int \operatorname{div} u^{\lambda} \frac{\left(\partial^{s} \tilde{p}^{\lambda}\right)^{2}}{2} d x\right| \leqslant C \sqrt{K}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}
$$

(iv) Thanks again to lemma 3, to assertions (2.5) and (2.6) of lemma 5 and to $H(K, T)$, we finally estimate (e) and (f) in the following way:

$$
\begin{aligned}
& |(e)+(f)| \leqslant(1+K) C(\alpha)\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+ \\
& \quad+\alpha\left|D^{s+1} u^{\lambda}\right|_{2}^{2}+(1+K) C(\alpha)\left|D u^{\lambda}\right|_{2}^{2}
\end{aligned}
$$

So, taking into account these estimates and lemma 1 , we find, integrating on $[0, T]$, that there exists $\beta>1$ and $\lambda_{6}=\lambda_{6}(K)$ so that :
$\forall t \in[0, T], \forall \lambda \geqslant \lambda_{6}$,

$$
\begin{aligned}
\left|D^{s} u^{\lambda}\right|_{2}^{2} & +\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+\int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau \leqslant \\
& \leqslant C E_{0}^{\lambda}+C(\alpha)\left(1+K^{\beta}\right) \int_{0}^{t}\left|D u^{\lambda}\right|_{2}^{2} d \tau+C\left(1+K^{3 / 2}\right) \int_{0}^{t}\left|D \tilde{p}^{\lambda}\right|_{2}^{2} d \tau \\
& +C(\alpha)\left(1+K^{3 / 2}\right) \int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau+\left(\alpha+\frac{K C}{\lambda}\right) \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau
\end{aligned}
$$

Then, using results (2.9) and (2.10), choosing $\alpha=1 / 4$, and $\lambda_{7}=\max \left(\lambda_{6}, 4 K C\right)$, we obtain the following result :

$$
\begin{align*}
& \text { Under hypothesis } H(K, T) \text {, there exists } \\
& \lambda_{7}=\lambda_{7}(K) \geqslant \lambda_{6} \geqslant \cdots \geqslant \lambda_{1}, \\
& \beta>1, \text { and some constant } C \text {, independent of } \lambda, K \text { and } T \text {, so that: } \\
& \forall t \in[0, T], \forall \lambda \geqslant \lambda_{7}, \tag{2.11}\\
& \left|D^{s} u^{\lambda}\right|_{2}^{2}+\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+\int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau \leqslant \\
& \leqslant C\left(1+K^{\beta}\right)\left(E_{0}^{\lambda}+\int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau\right) .
\end{align*}
$$

We now have to estimate $\int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau$, which is the aim of the : 4th Step : Estimate of $\int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau$.
First, let us note that if we call $v^{\lambda}=\rho^{\lambda} u^{\lambda}$, equation (2.1) becomes :

$$
\begin{equation*}
v_{t}^{\lambda}+\left(v^{\lambda} \cdot \nabla\right) u^{\lambda}+u^{\lambda} \operatorname{div} v^{\lambda}-v \Delta u^{\lambda}=-\lambda \nabla \tilde{p}^{\lambda} . \tag{2.12}
\end{equation*}
$$

Deriving $(s-1)$ times in x this equation, multiplying by $-\frac{\nabla \partial^{s-1} \tilde{\rho}^{\lambda}}{\lambda}$, and integrating on $\mathbb{R}^{n} \times[0, T]$, we obtain :

$$
\begin{aligned}
& \int_{0}^{t} \int \nabla \partial^{s-1} \tilde{p}^{\lambda} \cdot \nabla \partial^{s-1} \tilde{p}^{\lambda} d x d \tau= \\
&-\int_{0}^{t} \int \partial^{s-1} v_{t}^{\lambda} \cdot \frac{\nabla \partial^{s-1} \tilde{\rho}^{\lambda}}{\lambda} d x d \tau+v \int_{0}^{t} \int \Delta \partial^{s-1} u^{\lambda} \cdot \frac{\nabla \partial^{s-1} \tilde{\rho}^{\lambda}}{\lambda} d x d \tau \\
&-\int_{0}^{t} \int \partial^{s-1}\left(\left(v^{\lambda} \cdot \nabla\right) u^{\lambda}\right) \frac{\nabla \partial^{s-1} \tilde{\rho}^{\lambda}}{\lambda} d x d \tau \\
&-\int_{0}^{t} \int \partial^{s-1}\left(u^{\lambda} \operatorname{div} v^{\lambda}\right) \frac{\nabla \partial^{s-1} \tilde{\rho}^{\lambda}}{\lambda} d x d \tau=(a)+(b)+(c)+(d) .
\end{aligned}
$$

(i) From lemma 3, we easily deduce that:
$\int \nabla \partial^{s-1} \tilde{p}^{\lambda} \cdot \nabla \partial^{s-1} \tilde{\rho}^{\lambda} d x \geqslant k^{\prime}\left(p_{2}\right)\left|\nabla \partial^{s-1} \tilde{p}^{\lambda}\right|_{2}^{2}-\frac{C}{\lambda}\left|\nabla \tilde{p}^{\lambda}\right|_{H^{s-1}}\left|\nabla \partial^{s-1} \tilde{p}^{\lambda}\right|_{2}$.
It follows that there exists $\lambda_{8}=\lambda_{8}(K)$ so that, for any $\lambda \geqslant \lambda_{8}$, we have :

$$
\begin{aligned}
\int_{0}^{t} \int \nabla \partial^{s-1} \tilde{p}^{\lambda} \cdot \nabla \partial^{s-1} \tilde{\rho}^{\lambda} d x & d \tau \geqslant \\
& \geqslant \frac{k^{\prime}\left(p_{2}\right)}{2} \int_{0}^{t}\left|\nabla \partial^{s-1} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau-\frac{C}{\lambda} \int_{0}^{t}\left|D \tilde{p}^{\lambda}\right|_{2}^{2} d \tau .
\end{aligned}
$$

(ii) Estimate of (a).

$$
(a)=-\left[\int \partial^{s-1} v^{\lambda} \frac{\nabla \partial^{s-1} \tilde{\rho}^{\lambda}}{\lambda} d x\right]_{0}^{t}+\int_{0}^{t} \int \partial^{s-1} v^{\lambda} \cdot \nabla \partial^{s-1} \rho_{t}^{\lambda} d x d \tau
$$

Now, $\rho_{t}^{\lambda}=-\operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right)=-\operatorname{div} v^{\lambda}$. Then,

$$
(a)=-\left[\int \partial^{s-1} v^{\lambda} \frac{\nabla \partial^{s-1} \tilde{\rho}^{\lambda}}{\lambda} d x\right]_{0}^{t}+\int_{0}^{t}\left|\operatorname{div} \partial^{s-1} v^{\lambda}\right|_{2}^{2} d \tau
$$

So,

$$
|(a)| \leqslant \frac{C}{\lambda} E_{0}^{\lambda}+\left|D^{s-1} v^{\lambda}\right|_{2} \frac{\left|D^{s} \tilde{\rho}^{\lambda}\right|_{2}}{\lambda}+\int_{0}^{t}\left|D^{s} v^{\lambda}\right|_{2}^{2} d \tau
$$

On the other hand, thanks to lemma 5 and to hypothesis $H(K, T)$, we obtain :

$$
\begin{align*}
\left|D^{k} v^{\lambda}\right|_{2} & \leqslant C\left|D^{k} u^{\lambda}\right|_{2}+\frac{\sqrt{K}}{\lambda}\left|D^{k} \tilde{\rho}^{\lambda}\right|_{2} \\
& \leqslant C\left|D^{k} u^{\lambda}\right|_{2}+C \frac{\sqrt{K}}{\lambda}\left(\left|D^{k} \tilde{p}^{\lambda}\right|_{2}+\left|D \tilde{p}^{\lambda}\right|_{2}\right) \tag{2.13}\\
\left|v^{\lambda}\right|_{\infty} & \leqslant C K ; \quad\left|D v^{\lambda}\right|_{\infty} \leqslant C K
\end{align*}
$$

What gives finally :

$$
\begin{aligned}
|(a)| \leqslant & C E_{0}^{\lambda}+\frac{C}{\lambda}\left|D^{s} u^{\lambda}\right|_{2}^{2}+\frac{C}{\lambda}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+C(\alpha) \int_{0}^{t}\left|D u^{\lambda}\right|_{2}^{2} d \tau \\
& +\alpha \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau+\frac{K}{\lambda^{2}} \int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau+\frac{K}{\lambda^{2}} \int_{0}^{t}\left|D \tilde{p}^{\lambda}\right|_{2}^{2} d \tau
\end{aligned}
$$

(iii) It follows from lemma 5, (2.9) and (2.13) that :

$$
\begin{aligned}
&|c+d| \leqslant C \int_{0}^{t} \frac{\left|D^{s} \tilde{\rho}^{\lambda}\right|_{2}}{\lambda}\left[K\left|D u^{\lambda}\right|_{2}+\right. \\
&\left.+K\left|D^{s+1} u^{\lambda}\right|_{2}+\frac{K}{\lambda}\left|D \tilde{p}^{\lambda}\right|_{2}+\frac{K}{\lambda}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}\right] d \tau
\end{aligned}
$$

and consequently,

$$
\begin{aligned}
|c+d| \leqslant \frac{K^{2} C(\alpha)}{\lambda^{2}} & \int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau+ \\
& +\frac{K^{2} C(\alpha)}{\lambda^{2}} \int_{0}^{t}\left|D \tilde{p}^{\lambda}\right|_{2}^{2} d \tau+C E_{0}^{\lambda}+\alpha \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau .
\end{aligned}
$$

(iv) At last, we get easily :

$$
|b| \leqslant \alpha \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau+\frac{C(\alpha)}{\lambda^{2}} \int_{0}^{t}\left(\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+\left|D \tilde{p}^{\lambda}\right|_{2}^{2}\right) d \tau
$$

We deduce from the estimates above the following result :

$$
\left\lvert\, \begin{align*}
& \forall t \in[0, T], \quad \forall \lambda \geqslant \lambda_{8}(K) \geqslant \lambda_{7}, \\
& \int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau \leqslant C E_{0}^{\lambda}+\frac{C}{\lambda}\left|D^{s} u^{\lambda}\right|_{2}^{2} \tag{2.14}\\
& +\frac{C}{\lambda}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2}+3 \alpha \int_{0}^{t}\left|D^{s+1} u^{\lambda}\right|_{2}^{2} d \tau \\
& +\frac{\left(1+K^{2}\right)}{\lambda^{2}} C(\alpha) \int_{0}^{t}\left|D \tilde{p}^{\lambda}\right|_{2}^{2} d \tau+\frac{\left(1+K^{2}\right)}{\lambda^{2}} C(\alpha) \int_{0}^{t}\left|D^{s} \tilde{p}^{\lambda}\right|_{2}^{2} d \tau .
\end{align*}\right.
$$

Choosing α small enough and putting together the results (2.9), (2.10), (2.13) and (2.14), we can conclude.

Namely :
Proposition (2.15) : Under hypothesis $H(K, T)$, there exists some constants $N \in \mathbb{N}^{*}$ and $C \geqslant 1$, independent of λ, K and T, and $\lambda_{9}=\lambda_{9}(K)$, independent of T, so that :

$$
\forall t \in[0, T], \quad \forall \lambda \geqslant \lambda_{9},
$$

$\left|u^{\lambda}(t)\right|_{H^{s}}^{2}+\left|\tilde{p}^{\lambda}(t)\right|_{H^{s}}^{2}+\int_{0}^{t}\left|\nabla u^{\lambda}\right|_{H^{s}}^{2} d \tau+\int_{0}^{t}\left|\nabla \tilde{p}^{\lambda}\right|_{H^{s-1}}^{2} d \tau \leqslant C(1+K)^{N} \cdot E_{0}^{\lambda}$ and $\left|\tilde{\rho}^{\lambda}(t)\right|_{H^{s}}^{2}+\int_{0}^{t}\left|\nabla \tilde{\rho}^{\lambda}\right|_{H^{s-1}}^{2} d \tau \leqslant C(1+K)^{N} \cdot E_{0}^{\lambda}$.

COROLLARY: Under the same assumptions, the following estimate is verified:

$$
\left|u_{t}^{\lambda}\right|_{H^{s-2}}^{2}+\left|\tilde{p}_{t}^{\lambda}\right|_{H^{s-1}}^{2} \leqslant C \lambda(1+K)^{M} E_{0}^{\lambda} \quad\left(\text { for some } M \in \mathbb{N}^{*}\right)
$$

(It is a consequence of (2.15)).

B. Global existence

We first have to see that there really exists K and T verifying hypothesis $H(K, T)$.

Taking our inspiration from Nishida and Matsumura's technic in [3], we get the following local existence's result :

Proposition (2.16) : Let $\left(u_{0}^{\lambda}, p_{1}\right) \in\left(H^{s}\left(\mathbb{R}^{n}\right)\right)^{2}$, and $p_{0}^{\lambda}(x)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}}$. Let $E_{0}^{\lambda}=\left|u_{0}^{\lambda}\right|_{H^{s}}^{2}+\left|\lambda\left(p_{0}^{\lambda}(x)-p_{0}\right)\right|_{H^{s}}^{2}$, where $s>\left[\frac{n}{2}\right]+1$.

Then, for large enough $\lambda, \lambda \geqslant \lambda_{10}$, there exists a unic solution of the system (S^{λ}) on some interval $\left[0, T^{\lambda}\left(E_{0}^{\lambda}\right)\right]$, verifying :
(i) $T^{\lambda}\left(E_{0}\right)$ is an decreasing function of E_{0};
(ii) The solution $\left(u^{\lambda}, p^{\lambda}\right)$ satisfies:

$$
\forall t \in\left[0, T^{\lambda}\left(E_{0}^{\lambda}\right)\right], E^{\lambda}(t)=\left|u^{\lambda}(t)\right|_{H^{s}}^{2}+\left|\lambda\left(p^{\lambda}(t)-p_{0}\right)\right|_{H^{s}}^{2} \leqslant \phi\left(E_{0}^{\lambda}\right) \cdot E_{0}^{\lambda}
$$

where ϕ is an increasing function, independent of $\lambda \geqslant \lambda_{10}$, so that $\phi \geqslant 1$.

Now, we are going to put together proposition (2.15) and the above result to prove the global existence as soon as λ is large enough.

Let us introduce K_{0} realizing the maximum of the function $\Psi(K)$:

$$
\Psi(K)=\frac{K}{C(1+K)^{N} \cdot \phi\left[C(1+K)^{N}\right]}
$$

Let us note $\lambda_{0}=\max \left(\lambda_{9}\left(K_{0}\right), \lambda_{10}\right)$.

Choosing E_{0}^{λ} so that $E_{0}^{\lambda} \leqslant \Psi\left(K_{0}\right)<1$, we get :

$$
\phi\left(E_{0}^{\lambda}\right) E_{0}^{\lambda} \leqslant \phi(1) E_{0}^{\lambda} \leqslant \phi(1) \leqslant \phi\left[C\left(1+K_{0}\right)^{N}\right] \leqslant \frac{K_{0}}{C\left(1+K_{0}\right)^{N}} \leqslant K_{0} .
$$

Let us note $T_{0}^{\lambda}=T^{\lambda}\left(C\left(1+K_{0}\right)^{N} E_{0}^{\lambda}\right) \leqslant T^{\lambda}\left(E_{0}^{\lambda}\right)$.
Thus, we deduce that hypothesis $H\left(K_{0}, T_{0}^{\lambda}\right)$ is verified as soon as $\lambda \geqslant \lambda_{0}$.

It yields, from (2.15), that :

$$
\forall t \in\left[0, T_{0}^{\lambda}\right], \quad \forall \lambda \geqslant \lambda_{0}, \quad E^{\lambda}(t) \leqslant C\left(1+K_{0}\right)^{N} . E_{0}^{\lambda} .
$$

In particular, $E^{\lambda}\left(T_{0}^{\lambda}\right) \leqslant C\left(1+K_{0}\right)^{N} . E_{0}^{\lambda}$.
Now, let us apply the result (2.16), taking T_{0}^{λ} as initial instant. Since $E^{\lambda}\left(T_{0}^{\lambda}\right) \leqslant C\left(1+K_{0}\right)^{N} . E_{0}^{\lambda}$, then $T_{0}^{\lambda} \leqslant T^{\lambda}\left(E^{\lambda}\left(T_{0}^{\lambda}\right)\right)$.

So, it follows that :

$$
\forall t \in\left[T_{0}^{\lambda}, 2 T_{0}^{\lambda}\right], \quad \forall \lambda \geqslant \lambda_{0}, \quad E^{\lambda}(t) \leqslant \phi\left(E^{\lambda}\left(T_{0}^{\lambda}\right)\right) . E^{\lambda}\left(T_{0}^{\lambda}\right)
$$

Now, by construction :

$$
\begin{aligned}
\phi\left(E^{\lambda}\left(T_{0}^{\lambda}\right)\right) \cdot E^{\lambda}\left(T_{0}^{\lambda}\right) & \leqslant \phi\left(C\left(1+K_{0}\right)^{N} \cdot E_{0}^{\lambda}\right) \cdot C\left(1+K_{0}\right)^{N} \cdot E_{0}^{\lambda} \\
& \leqslant \phi\left(C\left(1+K_{0}\right)^{N}\right) \cdot C\left(1+K_{0}\right)^{N} \cdot \Psi\left(K_{0}\right) \leqslant K_{0}
\end{aligned}
$$

So, $\forall t \in\left[0,2 T_{0}^{\lambda}\right], \forall \lambda \geqslant \lambda_{0}, E^{\lambda}(t) \leqslant K_{0}$.
Iterating the process, we get the global existence.
Namely :
THEOREM 1: There exists $\lambda_{0}>0$ and $K_{0}>0$ so that: If $E_{0}^{\lambda} \leqslant K_{0}$ and $\lambda \geqslant \lambda_{0}$, then the system $\left(S^{\lambda}\right)$ admits a unic global solution (u^{λ}, p^{λ}) verifying :

$$
\begin{gathered}
u^{\lambda} \in C_{B}\left(0, \infty, H^{s}\right) \cap C_{B}^{1}\left(0, \infty, H^{s-2}\right) \\
\left(p^{\lambda}-p_{0}\right) \in C_{B}\left(0, \infty, H^{s}\right) \cap C_{B}^{1}\left(\theta, \infty, H^{s-1}\right),
\end{gathered}
$$

and

$$
\forall t \geqslant 0, \quad \forall \lambda \geqslant \lambda_{0},
$$

$$
\left|u^{\lambda}\right|_{H^{s}}^{2}+\left|\lambda\left(p^{\lambda}-p_{0}\right)\right|_{H^{s}}^{2}+\int_{0}^{\infty}\left|\nabla u^{\lambda}\right|_{H^{s}}^{2} d \tau+
$$

$$
+\int_{0}^{\infty}\left|\lambda \nabla\left(p^{\lambda}-p_{0}\right)\right|_{H^{s-1}}^{2} d \tau \leqslant K_{0}
$$

Moreover, $\quad\left|\partial_{t} p^{\lambda}\right|_{H^{s-1}}$ and $\left|\partial_{t} \rho^{\lambda}\right|_{H^{s-1}}$ are bounded, independently of $\lambda \geqslant \lambda_{0}$.

We are now going to establish some independent of λ estimates on derivatives in time, in order to obtain some convergence's results. This leads us to consider an initial data u_{0}^{λ} of the shape :

$$
u_{0}^{\lambda}(x)=u_{0}(x)+\frac{1}{\lambda} u_{1}(x), \text { where } \operatorname{div} u_{0}(x)=0
$$

III. A WEAK CONVERGENCE'S RESULT

Hence, we consider the system $\left(S^{\lambda}\right)$:

$$
\begin{align*}
& \rho^{\lambda} u_{t}^{\lambda}+\rho^{\lambda}\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}-v \Delta u^{\lambda}=-\lambda \nabla \tilde{p}^{\lambda} \tag{2.1}\\
& \tilde{p}_{t}^{\lambda}+u^{\lambda} \cdot \nabla \tilde{p}^{\lambda}+\gamma \tilde{p}^{\lambda} \cdot \operatorname{div} u^{\lambda}+\lambda \gamma p_{0} \operatorname{div} u^{\lambda}=0 \tag{2.2}\\
& u^{\lambda}(x, 0)=u_{0}(x)+\frac{1}{\lambda} u_{1}(x), \quad p^{\lambda}(x, 0)=p_{0}+\frac{1}{\lambda^{2}} p_{1}(x) \tag{2.3}
\end{align*}
$$

with the supplementary condition :

$$
\begin{equation*}
\operatorname{div} u_{0}(x)=0 \tag{3.1}
\end{equation*}
$$

The operation $\partial_{t}(2.1) \times \gamma p_{0} u_{t}^{\lambda}+\partial_{t}(2.2) \times \tilde{p}_{t}^{\lambda}$ gives, after integration on \mathbb{R}^{n} and thanks to lemma 4 :

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{\gamma}{2} p_{0}\left|\sqrt{\rho^{\lambda}} u_{t}^{\lambda}\right|_{2}^{2}+\frac{1}{2}\left|\tilde{p}_{i}^{\lambda}\right|_{2}^{2}\right]+\nu \gamma p_{0}\left|\nabla u_{t}^{\lambda}\right|_{2}^{2}+\gamma p_{0} \int \rho_{t}^{\lambda}\left(u^{\lambda} \cdot \nabla\right) u^{\lambda} \cdot u_{t}^{\lambda} d x \\
& \quad+\gamma p_{0} \int \rho^{\lambda}\left(u_{t}^{\lambda} \cdot \nabla\right) u^{\lambda} \cdot u_{t}^{\lambda} d x+\gamma p_{0} \int \rho_{t}^{\lambda}\left|u_{t}^{\lambda}\right|^{2} d x+\int u_{t}^{\lambda} \cdot \nabla \tilde{p}^{\lambda} \tilde{p}_{t}^{\lambda} d x \\
& \quad+\left(\gamma-\frac{1}{2}\right) \int\left|\tilde{p}_{t}^{\lambda}\right|^{2} \operatorname{div} u^{\lambda} d x+\gamma \int \tilde{p}^{\lambda} \tilde{p}_{t}^{\lambda} \operatorname{div} u_{t}^{\lambda} d x=0
\end{aligned}
$$

We deduce from that, thanks to lemmas 1 and 3, and to the results of theorem 1, the following inequality :

$$
\begin{aligned}
&\left|u_{t}^{\lambda}\right|_{2}^{2}+\left|\tilde{p}_{t}^{\lambda}\right|_{2}^{2}+\int_{0}^{t}\left|\nabla u_{t}^{\lambda}\right|_{2}^{2} d \tau \leqslant \\
& \leqslant C\left[\left|u_{t}^{\lambda}(0)\right|_{2}^{2}+\left|\tilde{p}_{t}^{\lambda}(0)\right|_{2}^{2}+\int_{0}^{t}\left(\left|u_{t}^{\lambda}\right|_{2}^{2}+\left|\tilde{p}_{t}^{\lambda}\right|_{2}^{2}\right) d \tau\right]
\end{aligned}
$$

This part of the reasoning clearly shows the necessity to introduce the assumption (3.1). As a matter of fact, it permits to obtain that, under the hypothesis of theorem 1 :

$$
\left|u_{t}^{\lambda}(., 0)\right|_{2} \leqslant\left|u_{0}^{\lambda} \cdot \nabla u_{0}^{\lambda}\right|_{2}+\frac{v}{\rho_{1}}\left|\Delta u_{0}^{\lambda}\right|_{2}+\frac{v}{\rho_{1}}\left|\nabla p_{1}\right|_{2} \leqslant C
$$

and

$$
\left|\tilde{p}_{t}^{\lambda}(., 0)\right|_{2} \leqslant\left|\gamma\left(p_{0}+\frac{p_{1}(.)}{\lambda}\right) \operatorname{div} u_{1}\right|_{2}+\left|\frac{\nabla p_{1}}{\lambda} u_{0}^{\lambda}\right|_{2} \leqslant C .
$$

So, for λ large enough, we have the following result :

$$
\begin{equation*}
\forall t \geqslant 0, \quad\left|u_{t}^{\lambda}\right|_{2}^{2}+\left|\tilde{p}_{t}^{\lambda}\right|_{2}^{2}+\int_{0}^{t}\left|\nabla u_{t}^{\lambda}\right|_{2}^{2} d \tau \leqslant C e^{C t} \tag{3.2}
\end{equation*}
$$

Using of the same methods for the derivatives of order $(s-2)$ in x, we get the equality :

$$
\begin{aligned}
\frac{d}{d t} & {\left[\frac{\gamma p_{0}}{2}\left|\sqrt{\rho^{\lambda}} D^{s-2} u_{t}^{\lambda}\right|_{2}^{2}+\frac{1}{2}\left|D^{s-2} \tilde{p}_{t}^{\lambda}\right|_{2}^{2}\right]+\nu \gamma p_{0}\left|D^{s-1} u_{t}^{\lambda}\right|_{2}^{2}=} \\
= & -\gamma p_{0} \int\left[D^{s-2}\left(\rho^{\lambda} u_{t t}^{\lambda}\right)-\rho^{\lambda} D^{s-2} u_{t t}^{\lambda}\right] \cdot D^{s-2} u_{t}^{\lambda} d x \\
& +\gamma p_{0} \int \frac{1}{2} \rho_{t}^{\lambda}\left(D^{s-2} u_{t}^{\lambda}\right)^{2} d x \\
& -\gamma p_{0} \int D^{s-2}\left(\rho_{t}^{\lambda} u_{t}^{\lambda}\right) D^{s-2} u_{t}^{\lambda} d x-\gamma p_{0} \int D^{s-2}\left(\rho_{t}^{\lambda} u^{\lambda} \cdot \nabla u^{\lambda}\right) D^{s-2} u_{t}^{\lambda} d x \\
& -\gamma p_{0} \int D^{s-2}\left(\rho^{\lambda} u_{t}^{\lambda} \cdot \nabla u^{\lambda}\right) D^{s-2} u_{t}^{\lambda} d x \\
& -\gamma p_{0} \int D^{s-2}\left(\rho^{\lambda} u^{\lambda} \cdot \nabla u_{t}^{\lambda}\right) D^{s-2} u_{t}^{\lambda} d x \\
& +\int D^{s-2}\left(\nabla \tilde{p}^{\lambda} u_{t}^{\lambda}\right) D^{s-2} \tilde{p}_{t}^{\lambda} d x \\
& +\frac{1}{2} \int \operatorname{div} u^{\lambda}\left(D^{s-2} \tilde{p}_{t}^{\lambda}\right)^{2} d x+\gamma \int D^{s-2}\left(\tilde{p}^{\lambda} \operatorname{div} u_{t}^{\lambda}\right) D^{s-2} \tilde{p}_{t}^{\lambda} d x \\
& +\int\left(D^{s-2}\left(\nabla \tilde{p}_{t}^{\lambda} u^{\lambda}\right)-u^{\lambda} D^{s-2} \nabla \tilde{p}_{t}^{\lambda}\right) D^{s-2} \tilde{p}_{t}^{\lambda} d x \\
& -\gamma \int D^{s-2}\left(\tilde{p}_{t}^{\lambda} \operatorname{div} u^{\lambda}\right) D^{s-2} \tilde{p}_{t}^{\lambda} d x .
\end{aligned}
$$

Except the first term of the right member, all the (numerous !) terms of this equality can be estimated by the technics developped all along the preceeding paragraph (lemma 5 and estimates of theorem 1).

Let us study this particular term a little more attentively.

Let us write :

$$
\begin{aligned}
& \int_{0}^{t} \int\left[D^{s-2}\left(\rho^{\lambda} u_{t t}^{\lambda}\right)-\rho^{\lambda} D^{s-2} u_{t t}^{\lambda}\right] D^{s-2} u_{t}^{\lambda} d x d \tau \leqslant \\
& \qquad \leqslant \int_{0}^{t}\left[\left|D \rho^{\lambda}\right|_{\infty}\left|D^{s-3} u_{t t}^{\lambda}\right|_{2}+\left|D^{s-2} \rho^{\lambda}\right|_{r}\left|u_{t t}^{\lambda}\right|_{r^{\prime}}\right]\left|D^{s-2} u_{t}^{\lambda}\right|_{2} d \tau
\end{aligned}
$$

Taking $\left(r, r^{\prime}\right)=(\infty, 2)$ when $n=2$ or 3 , and $\left(r, r^{\prime}\right)=\left(\frac{2 n}{n-2}, \frac{n}{2}\right)$ when $n \geqslant 4$, we get :

$$
\left|D^{s-2} \rho^{\lambda}\right|_{r} \leqslant \frac{1}{\lambda}\left|\tilde{\rho}^{\lambda}\right|_{H^{s}} \leqslant \frac{K_{0}}{\lambda} \quad \text { and } \quad\left|u_{t t}^{\lambda}\right|_{r^{\prime}} \leqslant\left|u_{t t}^{\lambda}\right|_{H^{s-3}}
$$

So, we just have to estimate $\int_{0}^{t} \frac{1}{\lambda^{2}}\left|u_{t t}^{\lambda}\right|_{H^{s-3}}^{2} d \tau$.
Let us note $\chi=\left|u_{t}^{\lambda}\right|_{H^{s-2}}^{2}+\left|\tilde{p}_{t}^{\lambda}\right|_{H^{s-2}}^{2}$, and let us derive in time the equation (2.1).

Proceeding by the now classical method, and using lemma 4, lemma 5 and the results of theorem 1, we get :

$$
\int_{0}^{t} \frac{1}{\lambda^{2}}\left(\left|u_{t t}^{\lambda}\right|_{H^{s-3}}^{2}\right) d \tau \leqslant C \int_{0}^{t} \chi(\tau) d \tau+\frac{C}{\lambda^{2}} \int_{0}^{t}\left|\nabla u_{t}^{\lambda}\right|_{H^{s-2}}^{2} d \tau
$$

Which yields, for λ large enough, to the following Gronwald's inequality :

$$
\chi(t)+\int_{0}^{t}\left|\nabla u_{t}^{\lambda}\right|_{H^{s-2}}^{2} d \tau \leqslant C \chi(0)+C \int_{0}^{t} \chi(\tau) d \tau
$$

We then can state the obtained result in the :
PROPOSITION : If $u_{0}^{\lambda}(x)=u_{0}(x)+\frac{u_{1}(x)}{\lambda} \in H^{s}$, with $\operatorname{div} u_{0}=0$, If $p_{0}^{\lambda}(x)=p_{0}+\frac{p_{1}(x)}{\lambda^{2}}$, with $p_{1} \in H^{s}$ and $s>\left[\frac{n}{2}\right]+1$, then, under the assumptions of theorem 1 , the solutions $\left(u^{\lambda}, p^{\lambda}\right)$ of $\left(S^{\lambda}\right)$ verify, as soon as λ is large enough, in addition to the already obtained estimates :

$$
\begin{equation*}
\left|u_{t}^{\lambda}\right|_{H^{s-2}}^{2}+\left|\tilde{p}_{t}^{\lambda}\right|_{H^{s-2}}^{2}+\int_{0}^{t}\left|\nabla u_{t}^{\lambda}\right|_{H^{s-2}}^{2} d \tau \leqslant M(t) \tag{3.3}
\end{equation*}
$$

In particular,

$$
\left\lvert\, \begin{align*}
& \left|p_{t}^{\lambda}\right|_{H^{s-2}}^{2}+\left|\rho_{t}^{\lambda}\right|_{H^{s-2}}^{2} \leqslant \frac{1}{\lambda^{2}} M(t), \tag{3.4}\\
& \left|\nabla \tilde{p}^{\lambda}\right|_{H^{s-2}}^{2}+\left|\operatorname{div}\left(\rho^{\lambda} u^{\lambda}\right)\right|_{H^{s-2}}^{2}+\left|\operatorname{div} u^{\lambda}\right|_{H^{s-2}}^{2} \leqslant \frac{1}{\lambda^{2}} M(t)
\end{align*}\right.
$$

where $M(t) \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$.
Now, we have got all that is necessary to prove that the sequence (u^{λ}, p^{λ}) weakly converges (in a sense that will be precised), to the solution (u^{∞}, p^{∞}) of the viscous incompressible fluid's equation:

$$
\left(S^{\infty}\right) \quad\left\{\begin{array}{l}
\rho_{0}\left(u_{t}^{\infty}+\left(u^{\infty} \cdot \nabla\right) u^{\infty}\right)-v \Delta u^{\infty}=-\nabla p^{\infty} \\
\operatorname{div} u^{\infty}=0, \quad u^{\infty}(x, 0)=u_{0}(x)
\end{array}\right.
$$

Remark: We'll now write « u^{λ} » for any subsequence of u^{λ}. In fact, this notation is justified : the unicity of the solutions $\left(u^{\lambda}, p^{\lambda}\right)$ and $\left(u^{\infty}, p^{\infty}\right)$ shows, a posteriori, that this is really the sequence (u^{λ}, p^{λ}) that converges and not any subsequence.

From the estimates of theorem 1 and from (3.3), we deduce that there exists u^{∞} verifying :

$$
u^{\infty} \in C_{B}\left(0, \infty, H^{s}\right) \cap C_{B}^{1}\left(0, \infty, H^{s-2}\right),
$$

so that :

$$
\left\lvert\, \begin{array}{ll}
u^{\lambda} \rightarrow u^{\infty} \quad \text { in } & L^{\infty}\left(0, \infty, H^{s}\right) \text { w.s. } \tag{3.5}\\
u_{t}^{\lambda} \rightarrow u_{t}^{\infty} \quad \text { in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty, H^{s-2}\right) \text { w.s. }
\end{array}\right.
$$

and,

$$
\left\{\begin{array}{lll}
\nabla u^{\lambda} \rightarrow \nabla u^{\infty} & \text { in } & L^{2}\left(0, \infty, H^{s}\right) \text { w.s. } \tag{3.6}\\
\nabla u_{t}^{\lambda} \rightarrow \nabla u_{t}^{\infty} & \text { in } & L_{\operatorname{loc}}^{2}\left(0, \infty, H^{s-2}\right) \text { w.s. . }
\end{array}\right.
$$

Moreover, from the inequality :

$$
\left|\lambda\left(\rho^{\lambda}-\rho_{0}\right)\right|_{H^{s}} \leqslant C K_{0},
$$

we deduce:

$$
\begin{equation*}
\rho^{\lambda} \rightarrow \rho_{0} \text { in } C_{B}\left(0, \infty, W^{\infty, s-2}\right) \text { strongly . } \tag{3.7}
\end{equation*}
$$

Then,

$$
\rho^{\lambda} u_{t}^{\lambda} \rightarrow \rho_{0} u_{t}^{\infty} \quad \text { in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty, H^{s-2}\right) \text { w.s. . }
$$

vol. $21, \mathrm{n}^{\circ} 3,1987$

From (3.5), we get that :
$u^{\lambda} \rightarrow u^{\infty} \quad$ in $\quad L_{\text {loc }}^{\infty}\left(0, \infty, H_{\text {loc }}^{s-1}\right)$ strongly and almost everywhere.
These last points lead to the following result :

$$
\rho^{\lambda}\left(u^{\lambda} \cdot \nabla\right) u^{\lambda} \rightarrow \rho_{0}\left(u^{\infty} \cdot \nabla\right) u^{\infty} \quad \text { in } \quad D^{\prime}\left(0, \infty, H^{s-1}\right) .
$$

Let us now consider ϕ in $D\left(0, T, H^{s-2}\right)$, so that $\operatorname{div} \phi=0$. Then,

$$
\left(\rho^{\lambda}\left(u_{t}^{\lambda}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)-v \Delta u^{\lambda}, \phi\right)=0 .
$$

Making λ go to $+\infty$, we deduce from the above results that :
$\left(\forall \phi \in D\left(0, T, H^{s-2}\right)\right)$,

$$
\left(\operatorname{div} \phi=0 \Rightarrow\left(\rho_{0} u_{t}^{\infty}+\rho_{0}\left(u^{\infty} \cdot \nabla\right) u^{\infty}-v \Delta u^{\infty}, \phi\right)=0\right)
$$

So, we have shown that there exists some function p^{∞} verifying :

$$
\rho_{0} u_{t}^{\infty}+\rho_{0}\left(u^{\infty} \cdot \nabla\right) u^{\infty}-v \Delta u^{\infty}=-\nabla p^{\infty}
$$

By construction, it is clear that :

$$
\nabla p^{\infty} \in C\left(0, \infty, H^{s-2}\right)
$$

and

$$
\lambda \nabla \tilde{p}^{\lambda} \rightarrow \nabla p^{\infty} \quad \text { in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty, H^{s-2}\right) \text { w.s. . }
$$

We can gather all these results in the following theorem :
THEOREM 2: Let us consider initial data of the shape :

$$
\begin{gathered}
u_{0}^{\lambda}(x)=u_{0}(x)+\frac{1}{\lambda} u_{1}(x), \quad p_{0}^{\lambda}(x)=p_{0}+\frac{1}{\lambda^{2}} p_{1}(x), \\
\operatorname{div} u_{0}=0, \quad p_{0}=\text { Cte } ; \\
\left(u_{0}, u_{1}, p_{1}\right) \in\left[H^{s}\left(\mathbb{R}^{n}\right)\right]^{3}, \text { with } s>\left[\frac{n}{2}\right]+1, \text { and }\left|u_{0}\right|_{H^{s}}^{2}<K_{0} .
\end{gathered}
$$

Then, the sequence $\left(u^{\lambda}, p^{\lambda}\right)$ converges to $\left(u^{\infty}, p^{\infty}\right)$, solution of the system $\left(S^{\infty}\right)$, in the following sense :

$$
\begin{gathered}
u^{\lambda} \rightarrow u^{\infty} \quad \text { in } \quad C_{\mathrm{loc}}\left(0, \infty, H_{\mathrm{loc}}^{s-1}\left(\mathbb{R}^{n}\right)\right) \text { strongly }, \\
\lambda \nabla \tilde{p}^{\lambda} \rightarrow \nabla p^{\infty} \quad \text { in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty, H^{s-2}\left(\mathbb{R}^{n}\right)\right) \text { w.s. }
\end{gathered}
$$

In addition, $u^{\infty} \in C_{B}\left(0, \infty, H^{s}\right) \cap C^{1}\left(0, \infty, H^{s-2}\right)$ and

$$
\nabla u^{\infty} \in L^{2}\left(0, \infty, H^{s}\right)
$$

Remark: We have shown a double stability for the system (S^{λ}):

- On one hand, stability of the estimates towards λ large enough.
- On the other hand, stability of the limit $\left(u^{\infty}, p^{\infty}\right)$ towards the initial data (u_{1}, p_{1}) smooth enough.

In particular, to obtain the results we need concerning the derivatives in time of u^{∞} and p^{∞}, we can choose $u_{1}=p_{1}=0$.

In this case, taking u_{0} smooth enough and deriving once more in time the equations (2.1) and (2.2), we just have to proceed as usual to get uniform in λ estimates on $u_{t t}^{\lambda}$ and $\tilde{p}_{t t}^{\lambda}$.

Which, passing to the limit, allowds to enonce the following properties :
Proposition : Let us suppose that $\left|u_{0}\right|_{H^{s+k}}^{2}<K_{0}(k \geqslant 1)$. Then:

$$
\left|u_{t t}^{\infty}\right|_{H^{s+k-4}}^{2}+\int_{0}^{t}\left|\nabla u_{t t}^{\infty}\right|_{H^{s+k-4}}^{2} d \tau+\int_{0}^{t}\left|\nabla \tilde{p}_{t}^{\infty}\right|_{H^{s+k-3}}^{2} d \tau \leqslant M(t) .
$$

Such a result naturally raises the following question :
«Could we get a best convergence by adding new fitting assumptions? ».

IV. STRONG CONVERGENCE

Like it often happens, to establish strong convergence's results, we have to give more regularity to the initial data.

Moreover, we have an estimate of $\left|\nabla p^{\infty}\right|_{H^{k}}$ and $\left|\nabla p_{t}^{\infty}\right|_{H^{k-2}}$, but we don't know anything about $\left|p^{\infty}\right|_{2}$ and $\left|p_{t}^{\infty}\right|_{2}$.

So, like Klainerman and Majda [2], we are going to impose to $\left|p^{\infty}\right|_{2}$ and $\left|p_{t}^{\infty}\right|_{2}$ to be locally bounded.
We then get the following result:
THEOREM 3: Let us consider the system (S^{λ}) with initial data:

$$
\begin{gathered}
u^{\lambda}(x, 0)=u_{0}(x)+\frac{1}{\lambda} u_{1}(x), \quad p^{\lambda}(x, 0)=p_{0}+\frac{1}{\lambda^{2}} p_{1}(x), \\
\operatorname{div} u_{0}=0, \quad p_{0}>0, \\
\left(u_{0}, u_{1}, p_{1}\right) \in\left[H^{s+2}\left(\mathbb{R}^{n}\right)\right]^{3}, \quad \text { with } s>\left[\frac{n}{2}\right]+1, \quad \text { and }\left|u_{0}\right|_{H^{s+2}}^{2}<K_{0} .
\end{gathered}
$$

Let us suppose, in addition, that the following assumption (H) is true :
(H) $\left|p^{\infty}(t)\right|_{2}+\left|p_{t}^{\infty}(t)\right|_{2} \leqslant M(t)$, where $\quad M(t) \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$.

Then, there exists $\lambda_{0} \geqslant 0$, so that :

$$
\begin{aligned}
\forall t \geqslant 0, \quad \forall \lambda \geqslant \lambda_{0}, \quad \lambda^{2}\left|u^{\lambda}-u^{\infty}\right|_{H^{s}}^{2}+ & \left|\lambda^{2}\left(p^{\lambda}-p_{0}\right)-p^{\infty}\right|_{H^{s}}^{2}+ \\
& +\lambda^{2} \int_{0}^{t}\left|\nabla\left(u^{\lambda}-u^{\infty}\right)\right|_{H^{s}}^{2} d \tau \leqslant M(t)
\end{aligned}
$$

Remark: The assumption $\left|u_{0}\right|_{H^{s+2}}^{2} \leqslant K_{0}$ is necessary to assure global existence of $\left(u^{\lambda}, p^{\lambda}\right)$ and $\left(u^{\infty}, p^{\infty}\right)$, as soon as λ is large enough (see theorem 1). Before going on, let us sum up the results that we have already got, in the case where the initial data are in H^{s+k}, with $k \in \mathbb{N}^{*}$:

$$
\begin{equation*}
\left|p^{\lambda}-p_{0}\right|_{W^{\infty, s+k-2}}^{2}+\left|\rho^{\lambda}-\rho_{0}\right|_{W^{\infty, s+k-2}}^{2} \leqslant \frac{K_{0}}{\lambda^{2}} \tag{4.5}
\end{equation*}
$$

$$
\begin{align*}
& \text { (4.1) }\left|u^{\lambda}\right|_{H^{s+k}}^{2}+\left|\tilde{p}^{\lambda}\right|_{H^{s+k}}^{2}+\int_{0}^{\infty}\left|\nabla u^{\lambda}\right|_{H^{s+k}}^{2} d \tau+\int_{0}^{\infty}\left|\nabla \tilde{p}^{\lambda}\right|_{H^{s+k-1}}^{2} d \tau \leqslant K_{0} ; \\
& \text { (4.2) }\left|u_{t}^{\lambda}\right|_{H^{s+k-2}}^{2}+\left|\tilde{p}_{t}^{\lambda}\right|_{H^{s+k-2}}^{2}+\int_{0}^{t}\left|\nabla u_{t}^{\lambda}\right|_{H^{s+k-2}}^{2} d \tau \leqslant M(t) \quad(t \geqslant 0) ; \tag{4.1}\\
& \text { (4.3) }\left|\nabla \tilde{p}^{\lambda}\right|_{H^{s+k-2}}^{2}+\left|\operatorname{div} u^{\lambda}\right|_{H^{s+k-2}}^{2} \leqslant \frac{M(t)}{\lambda^{2}} ; \tag{4.2}\\
& \text { (4.4) }|\tilde{\rho}|_{H^{s+k}}^{2} \leqslant C K_{0}, \quad\left|\tilde{\rho}_{t}^{\lambda}\right|_{H^{s+k-2}}^{2} \leqslant M(t) ; \tag{4.3}
\end{align*}
$$

$$
\begin{equation*}
\left|u^{\infty}\right|_{H^{s+k}}^{2}+\int_{0}^{\infty}\left|\nabla u^{\infty}\right|_{H^{s+k}}^{2} d \tau \leqslant K_{0} \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\left|u_{t}^{\infty}\right|_{H^{s+k-2}}^{2}+\left|\nabla p^{\infty}\right|_{H^{s+k-2}}^{2}+\int_{0}^{t}\left|\nabla u_{t}^{\infty}\right|_{H^{s+k-2}}^{2} d \tau \leqslant M(t) \quad(t \geqslant 0) \tag{4.7}
\end{equation*}
$$

$$
\int_{0}^{t}\left|\nabla p_{t}^{\infty}\right|_{H^{s+k-3}}^{2} d \tau \leqslant M(t)
$$

Having got all these important results, we are now going to use the usual technics to prove the result of the theorem.

Let us note

$$
\hat{u}=\lambda\left(u^{\lambda}-u^{\infty}\right) \quad \text { and } \quad \hat{p}=\lambda^{2}\left(p^{\lambda}-p_{0}\right)-p^{\infty}
$$

(N.B. : It follows from hypothesis (H) that $\hat{p} \in L^{2}$ and $\hat{p}_{t} \in L^{2}$.)

Then the couple (\hat{u}, \hat{p}) is a solution of the following system :

$$
\begin{align*}
& \rho_{0} \hat{u}_{t}+\tilde{\rho}^{\lambda} u_{t}^{\lambda}+\tilde{\rho}^{\lambda}\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}+\rho_{0}\left(u^{\lambda} \cdot \nabla\right) \hat{u}+ \tag{4.9}\\
&+\rho_{0}(\hat{u} \cdot \nabla) u^{\infty}-v \Delta \hat{u}=-\lambda \nabla \hat{p}
\end{align*}
$$

ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 389

$$
\begin{align*}
& \hat{\rho}_{t}+\lambda \nabla \tilde{p}^{\lambda} \cdot u^{\lambda}+\gamma \tilde{p}^{\lambda} \operatorname{div} \hat{u}+\lambda \gamma p_{0} \operatorname{div} \hat{u}=-p_{t}^{\infty}, \quad\left(\operatorname{div} u^{\infty}=0\right) \tag{4.10}\\
& \hat{u}(x, 0)=u_{1}(x), \quad \hat{p}(x, 0)=p_{1}(x)-p^{\infty}(x, 0)
\end{align*}
$$

1st Step : L^{2}-Norms of \hat{u} and \hat{p}.
Multiplying equation (4.9) by $\gamma p_{0} \hat{u}$ and equation (4.10) by \hat{p}, and integrating on \mathbb{R}^{n}, we get :
$\frac{d}{d t}\left[\frac{\gamma p_{0} \rho_{0}}{2}|\hat{u}|_{2}^{2}+\frac{1}{2}|\hat{p}|_{2}^{2}\right]+\nu \gamma p_{0}|\nabla \hat{u}|_{2}^{2}=$
$-\gamma p_{0} \int \tilde{\rho}^{\lambda}\left(u_{t}^{\lambda}+u^{\lambda} \nabla u^{\lambda}\right) \hat{u} d x-\gamma p_{0} \rho_{0} \int\left(u^{\lambda} \nabla\right) \hat{u} \cdot \hat{u} d x$
$-\gamma p_{0} \rho_{0} \int\left(\hat{u} \nabla u^{\infty}\right) \hat{u} d x$
$-\int u^{\lambda}\left(\lambda \nabla \tilde{p}^{\lambda}\right) \hat{p} d x-\int \gamma \tilde{p}^{\lambda} \operatorname{div} \hat{u} \hat{p} d x-\int p_{t}^{\infty} \hat{p} d x$.
Thanks to estimates (4.1) to (4.7), the right member can be majored by :

$$
M(t)+|\hat{u}|_{2}^{2}+\frac{\nu \gamma p_{0}}{2}|\nabla \hat{u}|_{2}^{2}+|\hat{p}|_{2}^{2}+\left|p_{t}^{\infty}\right|_{2}^{2}
$$

Using the supplementary condition on p_{t}^{∞}, it yields :

$$
\forall t \geqslant 0, \quad|\hat{u}(t)|_{2}^{2}+|\hat{p}(t)|_{2}^{2}+\int_{0}^{t}|\nabla \hat{u}(\tau)|_{2}^{2} d \tau \leqslant M(t)
$$

2nd Step : L^{2}-Norms of $D^{s} u$ and $D^{s} p$.
Let us derive s times the equations (4.9) and (4.10), multiply the first obtained equation by $\gamma p_{0} \partial^{s} \hat{u}$, the second by $\partial^{s} \hat{p}$, and integrate on $\mathbb{R}^{n} \times[0, t]$. Using the results (4.1) to (4.8) (for $k=2$), and the usual technics to estimate the obtained terms, we get :

$$
\begin{aligned}
\left|D^{s} \hat{u}\right|_{2}^{2} & +\left|D^{s} \hat{p}(t)\right|_{2}^{2}+\int_{0}^{t}\left|\nabla D^{s} \hat{u}\right|_{2}^{2} d \tau \leqslant M(t)+C|\hat{u}(0)|_{H^{s}}^{2}+|\hat{p}(0)|_{H^{s}}^{2}+ \\
& +C \int_{0}^{t}\left(\left|D^{s} \hat{u}(\tau)\right|_{2}^{2}+\left|D^{s} \hat{p}(\tau)\right|_{2}^{2}\right) d \tau+C \int_{0}^{t}\left|\nabla D^{s-1} p_{t}^{\infty}(\tau)\right|_{2}^{2} d \tau
\end{aligned}
$$

So, $\quad \forall t \geqslant 0, \quad|\hat{u}(t)|_{H^{s}}^{2}+|\hat{p}(t)|_{H^{s}}^{2}+\int_{0}^{t}|\nabla \hat{u}(\tau)|_{H^{s}}^{2} d \tau \leqslant M(t)$.
Remark: We can get « good» principle parts by scaling non linear terms.

V. AN INTTIAL LAYER PHENOMENON WHEN $\operatorname{div} \boldsymbol{u}_{0} \neq 0$

Hence we consider the solution $\left(u^{\lambda}, p^{\lambda}\right)$ of the system $\left(S^{\lambda}\right)$:

$$
\left\{\begin{array}{l}
\rho^{\lambda}\left(u_{t}^{\lambda}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)-v \Delta u^{\lambda}=-\lambda \nabla \tilde{p}^{\lambda} \\
\tilde{p}_{t}^{\lambda}+u^{\lambda} \cdot \nabla \tilde{p}^{\lambda}+\gamma \tilde{p}^{\lambda} \operatorname{div} u^{\lambda}+\lambda \gamma p_{0} \operatorname{div} u^{\lambda}=0 \\
u^{\lambda}(x, 0)=u_{0}(x)+\frac{1}{\lambda} u_{1}(x), \quad p^{\lambda}(x, 0)=p_{0}+\frac{1}{\lambda^{2}} p_{1}(x)
\end{array}\right.
$$

with now $\operatorname{div} u_{0} \neq 0$.
Let us write :

$$
\begin{equation*}
u_{0}=v_{0}+\nabla \phi_{0}, \quad \text { with } \quad \operatorname{div} v_{0}=0 \tag{5.1}
\end{equation*}
$$

Since the solution $\left(u^{\infty}, p^{\infty}\right)$ of the system $\left(S^{\infty}\right)$ verifies the condition : $\operatorname{Div} u^{\infty}=0$, it clearly appears an initial layer's phenomenon.

A fitting corrector term is provided by the solution $\left(v^{\lambda}, q^{\lambda}\right)$ of the linear following system :

$$
\left(C^{\lambda}\right) \begin{cases}(5.2) & \rho_{0} v_{t}^{\lambda}-v \Delta v^{\lambda}=-\lambda \nabla q^{\lambda} \\ (5.3) & q_{t}^{\lambda}+\lambda \gamma p_{0} \operatorname{div} v^{\lambda}=0 \\ (5.4) & v^{\lambda}(x, 0)=\nabla \phi_{0}(x), \quad q^{\lambda}(x, 0)=0\end{cases}
$$

We'll establish, in an appendix, the following result :
Proposition (5.5) : If $\phi_{0} \in W^{s+n+4}\left(\mathbb{R}^{n}\right)$, then v^{λ} verifies the following $L^{\infty}-L^{1}$ estimate :

$$
\begin{aligned}
& \left|v^{\lambda}\right|_{W^{s, \infty}} \leqslant \frac{C}{(1+\lambda t)}\left|\phi_{0}\right|_{W^{1, s+n+4}} \quad \text { if } n \geqslant 3 \\
& \left|v^{\lambda}\right|_{W^{s, \infty}} \leqslant \frac{C}{\sqrt{1+\lambda t}}\left|\phi_{0}\right|_{W^{1, s+6}} \quad \text { if } n=2
\end{aligned}
$$

Let us consider the solution $\left(u^{\infty}, p^{\infty}\right)$ of the system $\left(S^{\infty}\right)$:

$$
\left(S^{\infty}\right) \quad\left\{\begin{array}{l}
\rho_{0}\left(u_{t}^{\infty}+\left(u^{\infty} \cdot \nabla\right) u^{\infty}\right)-v \Delta u^{\infty}=-\nabla p^{\infty} \\
\operatorname{div} u^{\infty}=0, \quad u^{\infty}(x, 0)=v_{0}(x)
\end{array}\right.
$$

Like in paragraph 4 , we'll impose, in the whole part left, to p^{∞} to verify :

$$
\text { (H) } \quad\left|p^{\infty}\right|_{2}^{2}+\left|p_{t}^{\infty}\right|_{2}^{2} \leqslant M(t), \quad \text { where } \quad M(t) \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)
$$

We then prove the :
Theorem 4 : Let us consider the system $\left(S^{\lambda}\right)$ with the initial data:

$$
\begin{aligned}
& u^{\lambda}(x, 0)=v_{0}(x)+\nabla \phi_{0}(x)+\frac{1}{\lambda} u_{1}(x), \text { with } \operatorname{div} v_{0}(x)=0, \\
& p^{\lambda}(x, 0)=p_{0}+\frac{1}{\lambda^{2}} p_{1}(x), \quad p_{0}>0
\end{aligned}
$$

$\left(v_{0}, u_{1}, p_{1}\right) \in\left[H^{s+2}\left(\mathbb{R}^{n}\right)\right]^{3} \quad$ and $\quad \phi_{0} \in W^{1, s+n+5} \subset H^{s+3}\left(s>\left[\frac{n}{2}\right]+1\right)$,
and $\left|v_{0}+\nabla \phi_{0}\right|_{H^{s+2}}^{2}<K_{0}$.
Let us suppose, in addition, that hypothesis (H) is verified.
Then, there exists $\lambda_{0} \geqslant 0$, so that :

$$
\begin{aligned}
& \forall t>0, \quad \forall \lambda \geqslant \lambda_{0}, \\
& \left|u^{\lambda}-u^{\infty}-v^{\lambda}\right|_{H^{s}}+\left|\lambda\left(p^{\lambda}-p_{0}\right)-q^{\lambda}\right|_{H^{s}} \leqslant M(t) \frac{(1+\log (1+\lambda t))}{\lambda} \\
& \left|u^{\lambda}-u^{\infty}-v^{\lambda}\right|_{H^{s}}+\left|\lambda\left(p^{\lambda}-p_{0}\right)-q^{\lambda}\right|_{H^{s}} \leqslant \frac{1}{\sqrt{\lambda}} M(t) \\
& \text { if } n \geqslant 3 \\
& \text { if } n=2
\end{aligned}
$$

Proof: Let us note $w=u^{\lambda}-u^{\infty}-v^{\lambda}$ and $b=\tilde{p}^{\lambda}-\frac{1}{\lambda} p^{\infty}-q^{\lambda}$.
Considering the equations satisfied by $\left(u^{\lambda}, p^{\lambda}\right),\left(u^{\infty}, p^{\infty}\right)$ and $\left(v^{\lambda}, q^{\lambda}\right)$, we find that (w, b) is a solution of the following system :

$$
\begin{align*}
& \text { (5.6) } \rho^{\lambda} w_{t}+\rho_{0} w \nabla u^{\infty}+\rho_{0} u^{\lambda} \nabla w-v \Delta w+\frac{\tilde{\rho}^{\lambda}}{\lambda} v_{t}^{\lambda}+ \tag{5.6}\\
& \quad+\frac{\tilde{\rho}^{\lambda}}{\lambda}\left(u_{t}^{\infty}+u^{\lambda} \nabla u^{\lambda}\right)+\rho_{0}\left(v^{\lambda} \nabla u^{\infty}+u^{\lambda} \nabla v^{\lambda}\right)=-\lambda \nabla b, \\
& \text { (5.7) } \quad b_{t}+u^{\lambda} \nabla b+\gamma \tilde{p}^{\lambda} \operatorname{div} w+\lambda \gamma p_{0} \operatorname{div} w+ \\
& \quad+\left(\frac{p_{t}^{\infty}}{\lambda}+\frac{u^{\lambda} \nabla p^{\infty}}{\lambda}+\frac{\nu u^{\lambda} \Delta v^{\lambda}}{\lambda}\right)+\gamma \tilde{p}^{\lambda} \operatorname{div} v^{\lambda}-\rho_{0} v_{t}^{\lambda} \frac{u^{\lambda}}{\lambda}=0, \\
& \text { (5.8) } \quad w(x, 0)=\frac{1}{\lambda} u_{1}(x), \quad b(x, 0)=\frac{1}{\lambda}\left(p_{1}(x)-p^{\infty}(x, 0)\right) . \tag{5.8}
\end{align*}
$$

Let us note :
(5.9) $h(x, t)=w_{t}+\frac{\lambda \nabla b}{\rho^{\lambda}}$ and $k(x, t)=b_{t}+\lambda \gamma p_{0} \operatorname{div} w+\frac{1}{\lambda} p_{t}^{\infty}$.

Thanks to estimates (4.1), (4.5), (4.6) and (4.7), we deduce from the smoothness of the initial data $(k=2)$, that :

$$
\begin{equation*}
\forall t \geqslant 0, \quad|h(t)|_{H^{s}}+|k(t)|_{H^{s}} \leqslant M(t) \tag{5.10}
\end{equation*}
$$

Let us also note that equations (5.6) and (5.7) can be written as follows :

$$
\begin{align*}
& \rho^{\lambda} w_{t}+\rho_{0}(w \nabla) u^{\infty}+\rho_{0}\left(u^{\lambda} \nabla\right) w-v \Delta w+\frac{\tilde{\rho}^{\lambda}}{\lambda} v_{t}^{\lambda}+f^{\lambda}=-\lambda \nabla b \tag{5.11}\\
& \left(1-\frac{\tilde{p}^{\lambda}}{\lambda p_{0}}\right) b_{t}+u^{\lambda} \cdot \nabla b+\lambda \gamma p_{0} \operatorname{div} w-\rho_{0} v_{t}^{\lambda} \frac{u^{\lambda}}{\lambda}+g^{\lambda}=0 \tag{5.12}
\end{align*}
$$

where $\quad f^{\lambda}=\frac{\tilde{\rho}^{\lambda}}{\lambda}\left(u_{t}^{\infty}+\left(u^{\lambda} \nabla\right) u^{\lambda}\right)+\rho_{0}\left(\left(v^{\lambda} \nabla\right) u^{\infty}+\left(u^{\lambda} \nabla\right) v^{\lambda}\right)$,
and $\quad g^{\lambda}=\frac{1}{\lambda}\left(p_{t}^{\infty}+u^{\lambda} \nabla p^{\infty}+\nu u^{\lambda} \Delta v^{\lambda}+\frac{\tilde{p}^{\lambda}}{p_{0}} k-\frac{\tilde{p}^{\lambda}}{\lambda p_{0}} p_{t}^{\infty}\right)+\gamma \tilde{p}^{\lambda} \operatorname{div} v^{\lambda}$.
Let $a^{\lambda}(t)$ be the quantity:

$$
a^{\lambda}(t)=\int_{0}^{t}\left(\left|f^{\lambda}(\tau)\right|_{H^{s}}+\left|g^{\lambda}(\tau)\right|_{H^{s}}+\left|v^{\lambda}(\tau)\right|_{W^{\infty, s+1}}\right) d \tau
$$

We are going to need the following lemma:
Lemma (5.13) :

$$
\begin{aligned}
& a^{\lambda}(t) \leqslant \frac{M(t)}{\sqrt{\lambda}} \quad \text { if } n=2 \quad \text { and } \\
& a^{\lambda}(t) \leqslant \frac{M(t)}{\lambda}(1+\log (1+\lambda t)) \text { if } n \geqslant 3 .
\end{aligned}
$$

It is immediatly deduced from proposition (5.5) and from the assumptions of theorem 4.

1st Step : Estimate of w and b in L^{2}-norm.
Let us multiply equation (5.11) by $\gamma p_{0} w$ and equation (5.12) by b. The only true difficulty lays in the terms :

$$
\frac{\tilde{\rho}^{\lambda}}{\lambda} v_{t}^{\lambda} w \text { and } \frac{u^{\lambda}}{\lambda} v_{t}^{\lambda} b,
$$

because we just know that $\frac{v_{t}^{\lambda}}{\lambda}$ is bounded.
To avoid this difficulty, we just have to integrate by part, using (5.9). So, we obtain :

ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 393

$$
\begin{aligned}
& \frac{d}{d t}\left[\int\left(\gamma p_{0} \rho^{\lambda} \frac{w^{2}}{2}+\left(1-\frac{\tilde{p}^{\lambda}}{\lambda p_{0}}\right) \frac{b^{2}}{2}+\gamma p_{0} \frac{\tilde{\rho}^{\lambda}}{\lambda} v^{\lambda} w-\rho_{0} \frac{v^{\lambda} u^{\lambda} b}{\lambda}\right) d x\right] \\
& \quad+\nu \gamma p_{0}=|\nabla w|_{2}^{2}=\int\left(\gamma p_{0} \rho_{t}^{\lambda} \frac{w^{2}}{2}-p_{t}^{\lambda} \frac{b^{2}}{2 p_{0}}-\gamma \rho_{0} p_{0}(w \nabla) u^{\infty} \cdot w\right. \\
& \left.\quad+\frac{\gamma}{2} \rho_{0} p_{0} \operatorname{div} u^{\lambda}|w|^{2}+\operatorname{div} u^{\lambda} \frac{|b|^{2}}{2}\right) d x \\
& \quad+\int\left(\gamma p_{0} \frac{\tilde{\rho}_{t}^{\lambda}}{\lambda} v^{\lambda} w-\gamma p_{0} f^{\lambda} w-\gamma \rho_{0} p_{0} \nabla\left(u^{\lambda} v^{\lambda}\right) w\right. \\
& \left.\quad+\gamma p_{0} \operatorname{div}\left(\frac{\tilde{\rho}^{\lambda} v^{\lambda}}{\rho^{\lambda}}\right) b-\rho_{0} \frac{v^{\lambda}}{\lambda} u_{t}^{\lambda} b-g^{\lambda} b\right) d x \\
& \quad+\int\left(\gamma p_{0} \tilde{\rho}^{\lambda} h \frac{v^{\lambda}}{\lambda}-\rho_{0} u^{\lambda} \frac{v^{\lambda}}{\lambda} k+\rho_{0} u^{\lambda} v^{\lambda} \frac{p_{t}^{\infty}}{\lambda^{2}}\right) d x \\
& =I_{1}(t)+I_{2}(t)+I_{3}(t) .
\end{aligned}
$$

Let $\chi_{0}^{2}(t)=\operatorname{Sup}_{[0, t]}\left(|w(\tau)|^{2}+|b(\tau)|^{2}\right)$.
From the results of theorem 1 (§ II), we easily deduce the following estimates

$$
\begin{aligned}
& \int_{0}^{t}\left|I_{1}(\tau)\right| d \tau \leqslant K \int_{0}^{t} \chi_{0}^{2} d \tau \\
& \int_{0}^{t}\left|I_{2}(\tau)\right| d \tau \leqslant K \chi_{0} a^{\lambda}(t) \\
& \int_{0}^{t}\left|I_{3}(\tau)\right| d \tau \leqslant K \frac{a^{\lambda}(t)}{\lambda}
\end{aligned}
$$

Let us also note

$$
I_{4}(t)=\int\left(\gamma p_{0} \frac{\tilde{\rho}^{\lambda}}{\lambda} v^{\lambda} w-\rho_{0} \frac{v^{\lambda} u^{\lambda} b}{\lambda}\right) d x .
$$

Then I_{4} verifies:

$$
\left|I_{4}(t)\right| \leqslant \frac{K}{\lambda} \chi_{0}
$$

Now, thanks to hypothesis (H) and (5.8), we deduce that : $\chi_{0}(0) \leqslant \frac{K}{\lambda}$. Thus, we get the following inequality :

$$
\chi_{0}^{2}(t) \leqslant \frac{K}{\lambda^{2}}+\frac{K}{\lambda} \chi_{0}+\frac{K}{\lambda} a^{\lambda}(t)+K \chi_{0} a^{\lambda}(t)+K \int_{0}^{t} \chi_{0}^{2}(\tau) d \tau,
$$

vol. $21, n^{\circ} 3,1987$

$$
\begin{equation*}
\chi_{0}^{2}(t) \leqslant K\left(\left|a^{\lambda}(t)\right|^{2}+\int_{0}^{t} \chi_{0}^{2}(\tau) d \tau\right) \tag{5.14}
\end{equation*}
$$

2nd Step : Estimate of $D^{s} w$ and $D^{s} b$ in L^{2}-norm
We'll use the technics developped in paragraph II (pp. 16-18), the difficulty raised in the first step being solved by integrating by parts again. (We shall use in particular the inequalities (2.5) and (2.6)).

The operation

$$
\int D^{s}(5.6) \gamma p_{0} D^{s} w d x+\int D^{s}(5.7) \cdot D^{s} b d x
$$

hence gives :

$$
\begin{aligned}
\frac{d}{d t} & {\left[\int \gamma p_{0} \rho^{\lambda} \frac{\left(D^{s} w\right)^{2}}{2}+\left(1-\frac{\tilde{p}^{\lambda}}{\lambda p_{0}}\right) \frac{\left(D^{s} b\right)^{2}}{2}+\gamma p_{0} \frac{D^{s}\left(\tilde{\rho}^{\lambda} v^{\lambda}\right)}{\lambda} D^{s} w\right.} \\
& \left.-\rho_{0} \frac{D^{s}\left(u^{\lambda} v^{\lambda}\right)}{\lambda} D^{s} b\right]+\nu \rho_{0} p_{0}\left|\nabla D^{s} w\right|_{2}^{2}=\gamma \rho_{0} p_{0} \int\left(\frac{\rho_{t}}{\rho_{0}} \frac{\left(D^{s} w\right)^{2}}{2}\right. \\
& -D^{s}\left(w \cdot \nabla u^{\infty}\right) D^{s} w \\
& +\operatorname{div} u^{\lambda} \frac{\left(D^{s} w\right)^{2}}{2}-\left[D^{s}\left(u^{\lambda} \cdot \nabla w\right)-u^{\lambda} D^{s} \nabla w\right] \cdot D^{s} w d x \\
& +\int\left(\operatorname{div} u^{\lambda} \frac{\left(D^{s} b\right)^{2}}{2}-\frac{p_{t}^{\lambda}}{p_{0}} \frac{\left(D^{s} b\right)^{2}}{2}\right. \\
& \left.-\left[D^{s}\left(u^{\lambda} \cdot \nabla b\right)-u^{\lambda}\left(D^{s} \nabla b\right)\right] \cdot D^{s} b\right) d x \\
& +\gamma p_{0} \int\left(D^{s}\left(\tilde{\rho}_{t}^{\lambda} \frac{v^{\lambda}}{\lambda}\right) D^{s} w+D^{s+1}\left(\tilde{\rho}^{\lambda} v^{\lambda}\right) D^{s-1}\left(\frac{\nabla b}{\rho^{\lambda}}\right)\right. \\
& -\int\left(\rho_{0} D^{s}\left(f_{t}^{\lambda} \frac{v^{\lambda}}{\lambda}\right) D^{s} b+D^{s} g^{\lambda} \cdot D^{s} b\right) d x \\
& +\int\left(\gamma p_{0} D^{s}\left(\tilde{\rho}^{\lambda} v^{\lambda}\right) \frac{D^{s} h}{\lambda}-\rho_{0} D^{s}\left(u^{\lambda} v^{\lambda}\right) \frac{D^{s} k}{\lambda}+\rho_{0} D^{s}\left(u^{\lambda} v^{\lambda}\right) \frac{D^{s}\left(p_{t}^{\infty}\right)}{\lambda^{2}}\right) d x \\
& +\int\left(\gamma p_{0}\left[D^{s}\left(\rho^{\lambda} w_{t}\right)-\rho^{\lambda}\left(D^{s} w_{t}\right)\right] \cdot D^{s} w\right. \\
& \left.+\left[D^{s}\left(1-\frac{\tilde{\rho}^{\lambda}}{\lambda p_{0}}\right) b_{t}-\left(1-\frac{\tilde{p}^{\lambda}}{\lambda p_{0}}\right) D^{s} b_{t}\right] \cdot D^{s} b\right) d x \\
= & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}
\end{aligned}
$$

ASYMPTOTIC BEHAVIOUR FOR THE COMPRESSIBLE N.-S. EQUATION 395
Let

$$
\chi_{s}^{2}(t)=\operatorname{Sup}_{[0, t]}\left(\left|D^{s} w(\tau)\right|_{2}^{2}+\left|D^{s} b(\tau)\right|_{2}^{2}\right)
$$

Thanks to the lemma 5 and the results of theorem 1 in particular, the integral

$$
\left|\int_{0}^{t}\left(I_{1}+I_{2}+I_{3}+I_{4}+I_{5}\right)(\tau) d \tau\right|
$$

is majored, as in the first step, by :

$$
K\left[\int_{0}^{t}\left(\chi_{0}^{2}(\tau)+\chi_{s}^{2}(\tau)\right) d \tau+a^{\lambda}(t)\left(\chi_{0}+\chi_{s}\right)+a^{\lambda}(t)^{2}\right]
$$

Also, if we note

$$
I_{7}(t)=\int\left(\gamma p_{0} \frac{D^{s}\left(\tilde{\rho}^{\lambda} v^{\lambda}\right)}{\lambda} D^{s} w-\rho_{0} \frac{D^{s}\left(u^{\lambda} v^{\lambda}\right)}{\lambda} D^{s} b\right) d x
$$

then,

$$
\left|I_{7}(t)\right| \leqslant \frac{K}{\lambda}\left(\chi_{0}+\chi_{s}\right) \leqslant a^{\lambda}(t) \cdot\left(\chi_{0}+\chi_{s}\right)
$$

Now, we have to estimate I_{6}. Using (5.9) and (2.5), we get :

$$
I_{6}(t) \leqslant \frac{1}{\lambda} \chi_{s}+\left(\chi_{0}+\chi_{s}\right) \cdot \chi_{s}+\frac{1}{\lambda^{2}}\left|p_{t}^{\infty}\right|_{H^{s}} \chi_{s}
$$

Thus, we get the following inequality for χ_{s} :

$$
\chi_{s}^{2}(t) \leqslant K\left[\left(\chi_{0}+\chi_{s}\right) a^{\lambda}(t)+a^{\lambda}(t)^{2}+\int_{0}^{t}\left(\chi_{0}^{2}+\chi_{s}^{2}\right)(\tau) d \tau\right]
$$

what, added (!) to (5.14), leads to a Gronwald's inequality verified by $\chi_{0}^{2}+\chi_{s}^{2}$. Hence,

$$
|w|_{H^{s}}^{2}+|b|_{H^{s}}^{2}=\chi_{0}^{2}+\chi_{s}^{2} \leqslant K M(t) \cdot a^{\lambda}(t)^{2} .
$$

Finally, let us remark that :

$$
\left|\lambda\left(p^{\lambda}-p_{0}\right)-q^{\lambda}\right|_{H^{s}}^{2} \leqslant|b|_{H^{s}}^{2}+\frac{1}{\lambda^{2}}\left|p^{\infty}\right|_{H^{s}}^{2}
$$

So, the theorem is proven.
Remark: As in paragraph 4, we can find a principal part of $u^{\lambda}-u^{\infty}-v^{\lambda}$, which, in fact, is the same than in the case : div $u_{0}=0$.

A REMARK CONCERNING EULER'S EQUATIONS

In [2], Klainerman and Majda study the compressible Euler's equations

$$
\left(E^{\lambda}\right)\left\{\begin{array}{l}
\rho^{\lambda}\left(\frac{\partial u^{\lambda}}{\partial t}+\left(u^{\lambda} \cdot \nabla\right) u^{\lambda}\right)=-\lambda^{2} \nabla p^{\lambda} \\
\frac{\partial p^{\lambda}}{\partial t}+u^{\lambda} \cdot \nabla p^{\lambda}+\gamma p^{\lambda} \operatorname{div} u^{\lambda}=0 \\
u^{\lambda}(x, 0)=u_{0}^{\lambda}(x), \quad p^{\lambda}(x, 0)=p_{0}^{\lambda}(x)
\end{array}\right.
$$

with again : $p=A \rho^{\gamma}, \gamma>1$.
First, they consider initial data :

$$
u_{0}^{\lambda} \in H^{s}\left(\mathbb{R}^{n}\right), \quad\left(p_{0}^{\lambda}-p_{0}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \quad \text { with } \quad s>\left[\frac{n}{2}\right]+1
$$

Then, they obtain, on a finite time intervall, estimations of the same type than the ones obtained in paragraph 2 (by completly different methods).

More precisely, they prove that there exists a finite time intervall $[0, T]$, depending only on initial data, and a constant $\Delta_{s}>0$, so that, for $\lambda \geqslant 1$, there exists a classical solution $\left(u^{\lambda}, p^{\lambda}\right)$ in $C^{1}\left([0, T] \times \mathbb{R}^{n}\right)$ for the system (E^{λ}), satisfying :

$$
\forall t \in[0, T], \quad\left|u^{\lambda}\right|_{H^{s}}+\left|\lambda\left(p^{\lambda}-p_{0}\right)\right|_{H^{s}} \leqslant \Delta_{s}
$$

If the initial data verify in addition :

$$
\begin{aligned}
& u_{0}^{\lambda}(x)=u_{0}(x)+\frac{1}{\lambda} u_{1}(x), \quad \text { with } \quad \operatorname{div} u_{0}=0 \\
& p_{0}^{\lambda}(x)=p_{0}+\frac{1}{\lambda^{2}} p_{1}(x), \quad p_{0}=\text { Cte }, \quad\left(u_{1}, p_{1}\right) \in H^{s}
\end{aligned}
$$

they obtain, as we did, estimates on derivatives in time of $\left(u^{\lambda}, p^{\lambda}\right)$.
So, they prove a weak convergence of the solutions $\left(u^{\lambda}, p^{\lambda}\right)$ to the solution (u^{∞}, p^{∞}) of incompressible Euler's equations :

$$
\left(E^{\infty}\right) \quad\left\{\begin{array}{l}
\rho_{0}\left(u_{t}^{\infty}+\left(u^{\infty} \cdot \nabla\right) u^{\infty}\right)=-\nabla p^{\infty} \\
\operatorname{div} u^{\infty}=0, \quad u^{\infty}(x, 0)=u_{0}(x)
\end{array}\right.
$$

(this solution living on an intervall $\left[0, T^{*}[\right.$, see [10]).
Finally, introducing the supplementary condition:

$$
\begin{aligned}
& \forall T_{0}<T^{*}, \quad \forall t \in\left[0, T_{0}\right], \quad\left|p^{\infty}\right|_{2}+\left|p_{t}^{\infty}\right|_{2} \leqslant M(t), \\
& \mathrm{M}^{2} \text { AN Modélisation mathématique et Analyse numérique } \\
& \text { Mathematical Modelling and Numerical Analysis }
\end{aligned}
$$

they show the following strong convergence's result : there exists $\lambda\left(T_{0}\right)$ so that, for $\lambda \geqslant \lambda\left(T_{0}\right)$, the system (E^{λ}) with initial data (5.15) has a unic classical solution $\left(u^{\lambda}, p^{\lambda}\right)$ verifying :

$$
\begin{aligned}
\forall t \leqslant T_{0}, & \left|u^{\lambda}-u^{\infty}\right|_{H^{s}}+\frac{1}{\lambda}\left|u_{t}^{\lambda}-u_{t}^{\infty}\right|_{H^{s-1}} \leqslant \frac{C}{\lambda} \\
& \lambda\left|p^{\lambda}-p^{\infty}\right|_{H^{s}}+\left|p_{t}^{\lambda}\right|_{H^{s-1}} \leqslant \frac{C}{\lambda} \quad(C>0) .
\end{aligned}
$$

They also show a principal part.
Their results and ours were so similar that we decided to study the initial layer's problem appearing in this case, if we no more suppose :

Div $u_{0}=0$, but : $u_{0}(x)=v_{0}(x)+\nabla \phi_{0}(x), \quad$ with $\operatorname{div} v_{0}=0$.
Precisely, we get the :
Proposition : Let us consider the system $\left(E^{\lambda}\right)$ with initial data:

$$
\begin{gathered}
u^{\lambda}(x, 0)=v_{0}(x)+\nabla \phi_{0}(x)+\frac{1}{\lambda} u_{1}(x), \\
\operatorname{div} v_{0}=0, \quad p^{\lambda}(x, 0)=p_{0}+\frac{1}{\lambda^{2}} p_{1}(x), \\
\left(v_{0}, u_{1}, p_{1}\right) \in\left[H^{s+1}\left(\mathbb{R}^{n}\right)\right]^{3}, \quad \phi_{0} \in W^{1, s+n+2}\left(\mathbb{R}^{n}\right)
\end{gathered}
$$

and $s>\left[\frac{n}{2}\right]+1 \quad(n \geqslant 2)$.
Let us suppose in addition that :

$$
\forall T_{0}<T, \quad \forall t \in\left[0, T_{0}\right], \quad\left|p^{\infty}(t)\right|_{2}+\left|p_{t}^{\infty}(t)\right|_{2} \leqslant M(t)
$$

Then, there exists $\lambda\left(T_{0}\right)>0$, so that :
$\forall \lambda \geqslant \lambda\left(T_{\theta}\right), \quad \forall t \in\left[0, T_{0}\right]$,

$$
\begin{aligned}
&\left|u^{\lambda}-u^{\infty}-v^{\lambda}\right|_{H^{s}}+\left|\lambda\left(p^{\lambda}-p_{0}\right)-q^{\lambda}\right|_{H^{s}} \leqslant \frac{C}{\sqrt{\lambda}} \\
& \frac{C}{\lambda}(1+\log (1+\lambda t)) \\
& \text { if } n=2 \\
& \frac{C}{\lambda}\left(1+(1+\lambda t)^{-\frac{n-3}{2}}\right) \\
& \text { if } n=4
\end{aligned}
$$

vol. $21, \mathrm{n}^{\circ} 3,1987$
where $\left(v^{\lambda}, q^{\lambda}\right)$ is the solution of the waves equation:

$$
\left\{\begin{array}{l}
\rho_{0} v_{t}^{\lambda}+\lambda \nabla q^{\lambda}=0 \\
q_{t}^{\lambda}+\lambda \gamma p_{0} \operatorname{div} v^{\lambda}=0 \\
v^{\lambda}(x, 0)=\nabla \phi_{0}(x), \quad q^{\lambda}(x, 0)=0
\end{array}\right.
$$

The demonstration of this result is exactly the same than the one of theorem 4 but, in this case, the initial layer's properties are well known. As a matter of fact, Klainerman proves in [8] the following property, which is here fundamental:

PROPOSITION : If $\phi_{0} \in W^{1, s+n+1}$, we have the following $L^{\infty}-L^{1}$ estimate :

$$
\left|v^{\lambda}(t)\right|_{W^{\infty, s}} \leqslant C(1+\lambda t)^{-\frac{n-1}{2}}\left|\nabla \phi_{0}\right|_{W^{1, s+n}} \quad(\forall n \geqslant 2)
$$

APPENDIX

Our purpose here is to study the decreasing with λ of $\left|D^{s} v^{\lambda}\right|_{\infty}$, where (v^{λ}, q^{λ}) is the solution of the following linear system :

$$
\left(C^{\lambda}\right)\left\{\begin{array}{l}
\rho_{0} \frac{\partial v^{\lambda}}{\partial t}-v \Delta v^{\lambda}=-\lambda \nabla q^{\lambda} \\
\frac{\partial q^{\lambda}}{\partial t}+\lambda \gamma p_{0} \operatorname{div} v^{\lambda}=0 \\
v^{\lambda}(x, 0)=\nabla \phi_{0}(x), \quad q^{\lambda}(x, 0)=0
\end{array}\right.
$$

The choice of the initial data $\left(v^{\lambda}(x, 0)=\nabla \phi_{0}(x)\right)$, and the regularity of ϕ_{0}, permit to write the solution (v^{λ}, q^{λ}) in the form ($\nabla \phi^{\lambda}, q^{\lambda}$), where the couple ($\phi^{\lambda}, q^{\lambda}$) verifies the following equations:

$$
\left(D^{\lambda}\right)\left\{\begin{array}{l}
\rho_{0} \frac{\partial \phi^{\lambda}}{\partial t}-v \Delta \phi^{\lambda}=-\lambda q^{\lambda} \\
\frac{\partial q^{\lambda}}{\partial t}+\lambda \gamma p_{0} \Delta \phi^{\lambda}=0 \\
\phi^{\lambda}(x, 0)=\phi_{0}(x), \quad q^{\lambda}(x, 0)=0
\end{array}\right.
$$

We then obtain the following result :
THEOREM : Let us suppose that $\phi_{0} \in W^{1, k+n+3}(k \in \mathbb{N})$. Then, for λ large enough, the following estimates are verified:

$$
\begin{array}{ll}
\left|\phi^{\lambda}(., t)\right|_{W^{\infty, k}} \leqslant \frac{C}{(1+\lambda t)}\left|\phi_{0}\right|_{W^{1, k+n+3}} & \text { if } n \geqslant 3 \\
\left|\phi^{\lambda}(., t)\right|_{W^{\infty, k}} \leqslant \frac{C}{\sqrt{1+\lambda t}}\left|\phi_{0}\right|_{W^{1, k+5}} & \text { if } n=2 .
\end{array}
$$

Remark : Since $W^{1, n}\left(\mathbb{R}^{n}\right) \subset H^{\left[\frac{n}{2}\right]}\left(\mathbb{R}^{n}\right)$, we also have :

$$
\begin{aligned}
\gamma \rho_{0} p_{0}\left|\nabla \phi^{\lambda}(., t)\right|_{H^{h}}^{2}+\left|q^{\lambda}(., t)\right|_{H^{h}}^{2} & \leqslant \\
& \leqslant \gamma \rho_{0} p_{0}\left|\nabla \phi_{0}\right|_{H^{h}}^{2}, \quad \text { for any } h \leqslant\left[\frac{n}{2}\right]+2+k .
\end{aligned}
$$

Corollary : If $\phi_{0} \in W^{1, k+n+4}\left(\mathbb{R}^{n}\right)$, then :

$$
\begin{array}{ll}
\left|v^{\lambda}(., t)\right|_{W^{\infty, k}} \leqslant \frac{C}{(1+\lambda t)}\left|\phi_{0}\right|_{W^{1, k+n+4}} & \text { if } n \geqslant 3, \\
\left|v^{\lambda}(., t)\right|_{W^{\infty, k}} \leqslant \frac{C}{\sqrt{1+\lambda t}}\left|\phi_{0}\right|_{W^{1, k+6}} \quad \text { if } n=2 .
\end{array}
$$

Remark: If we had chosen initial data under the shape :

$$
v^{\lambda}(x, 0)=v_{0}(x)+\nabla \phi_{0}(x) \text { with } \operatorname{div} v_{0}=0 \text { and } v_{0} \neq 0
$$

we couldn't have obtained these basic decreasing of v^{λ} results.
As a matter of fact, we would have obtained : $v^{\lambda}=w+\nabla \phi^{\lambda}$, where ϕ^{λ} is the solution of the system $\left(D^{\lambda}\right)$, and w the solution of the heath equation :

$$
\left\{\begin{array}{l}
w_{t}-v \Delta w=0 \\
w(x, 0)=v_{0}(x) .
\end{array}\right.
$$

w being independent of λ, there is no more decreasing with λ.
Proof of the theorem: The function ϕ^{λ} being a solution of the system $\left(D^{\lambda}\right)$, it verifies the following equation :

$$
\left\{\begin{array}{l}
\rho_{0} \phi_{t t}^{\lambda}-v \Delta \phi_{t}^{\lambda}-\lambda^{2} \gamma p_{0} \Delta \phi^{\lambda}=0, \\
\phi^{\lambda}(x, 0)=\phi_{0}(x), \quad \phi_{t}^{\lambda}(x, 0)=\frac{v}{\rho_{0}} \Delta \phi_{0}(x) .
\end{array}\right.
$$

To make the calculations simpler, we shall suppose that :

$$
\rho_{0}=1, \quad \nu=2, \quad \gamma p_{0}=1
$$

Hence, let us consider ϕ^{λ} solution of

$$
\left\{\begin{array}{l}
\phi_{t t}^{\lambda}-2 \Delta \phi_{t}^{\lambda}-\lambda^{2} \Delta \phi^{\lambda}=0, \\
\phi^{\lambda}(x, 0)=\phi_{0}(x), \quad \phi_{t}^{\lambda}(x, 0)=2 \Delta \phi_{0}(x)
\end{array}\right.
$$

vol. 21, n $^{\circ} 3,1987$

We then find that the Fourier Transform in $x, \hat{\phi}^{\lambda}$, of ϕ^{λ} verifies :

$$
\begin{aligned}
& \hat{\phi}_{t t}^{\lambda}+2|\xi|^{2} \hat{\phi}_{t}^{\lambda}+\lambda^{2}|\xi|^{2} \hat{\phi}^{\lambda}=0, \quad \xi \in \mathbb{R}^{n}, \quad t \in \mathbb{R}^{+}, \\
& \hat{\phi}^{\lambda}(\xi, 0)=\hat{\phi}_{0}(\xi), \quad \hat{\phi}_{t}^{\lambda}(\xi, 0)=-2|\xi|^{2} \hat{\phi}_{0}(\xi)
\end{aligned}
$$

So we obtain ϕ^{λ} in the form :

$$
\begin{aligned}
& \phi^{\lambda}(x, t)=\int_{\mathbb{R}} e^{i x \cdot \xi} \hat{\phi}_{0}(\xi) d \xi \\
& =\int_{|\xi|<\lambda} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi) \times \\
& \quad \times\left[\cos \left(t|\xi| \sqrt{\lambda^{2}-|\xi|^{2}}\right)-\frac{|\xi|}{\sqrt{\lambda^{2}-|\xi|^{2}}} \sin \left(t|\xi| \sqrt{\lambda^{2}-|\xi|^{2}}\right)\right] d \xi \\
& +\int_{|\xi|>\lambda} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi) \times \\
& \quad \times\left[\operatorname{ch}\left(t|\xi| \sqrt{|\xi|^{2}-\lambda^{2}}\right)-\frac{|\xi|}{\sqrt{|\xi|^{2}-\lambda^{2}}} \operatorname{sh}\left(t|\xi| \sqrt{|\xi|^{2}-\lambda^{2}}\right)\right] d \xi
\end{aligned}
$$

So, we shall write :

$$
\begin{aligned}
& \phi^{\lambda}(x, t)=\int_{|\xi|<\sqrt{\lambda}} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi) \times \cos \left(t|\xi| \sqrt{\lambda^{2}-|\xi|^{2}}\right) d \xi \\
& +\int_{\sqrt{\lambda}<|\xi|<\lambda} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi) \times \\
& \quad \times\left[\cos \left(t|\xi| \sqrt{\lambda^{2}-|\xi|^{2}}\right)-\frac{|\xi|}{\sqrt{\lambda^{2}-|\xi|^{2}}} \sin \left(t|\xi| \sqrt{\lambda^{2}-|\xi|^{2}}\right)\right] d \xi \\
& -\int_{|\xi|<\sqrt{\lambda}} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi) \frac{|\xi|}{\sqrt{\lambda^{2}-|\xi|^{2}}} \sin \left(t|\xi| \sqrt{\lambda^{2}-|\xi|^{2}}\right) d \xi \\
& +\int_{|\xi|>\lambda} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi) \times \\
& \quad \times\left[\operatorname{ch}\left(t|\xi| \sqrt{|\xi|^{2}-\lambda^{2}}\right)-\frac{|\xi|}{\sqrt{|\xi|^{2}-\lambda^{2}}} \operatorname{sh}\left(t|\xi| \sqrt{|\xi|^{2}-\lambda^{2}}\right)\right] d \xi \\
& =I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

(i) Majoration of I_{1} :

This term represents, in a way, the «principal» part of $\phi^{\lambda}(x, t)$. Let us call S the waves equation's semi-group, and K the heat equation's Kernel.

Then, let us split up I_{1} :

$$
\begin{aligned}
I_{1}= & \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi) \cos (t|\xi| \lambda) d \xi \\
& -\int_{\sqrt{\lambda}<|\xi|} e^{i x \cdot \xi} e^{-t|\xi|^{2}} \hat{\phi}_{0}(\xi) \cos (t|\xi| \lambda) d \xi \\
& +\int_{|\xi|<\sqrt{\lambda}} e^{i x \cdot \xi} e^{-|\xi|^{2} t} \hat{\phi}_{0}(\xi)\left[\cos t|\xi| \lambda \sqrt{1-\frac{|\xi|^{2}}{\lambda^{2}}}-\cos t|\xi| \lambda\right] d \xi \\
= & I_{5}+I_{6}+I_{7} .
\end{aligned}
$$

We recognize in I_{5} the following expression : $I_{5}=S(\lambda t)\left(K * \phi_{0}\right)$.
Thanks to the properties of the solutions of the waves and heat equations, we deduce from that :
(A.1) $\left|I_{5}\right| \leqslant C\left|K * \phi_{0}\right|_{W^{1, n}}(1+\lambda t)^{-\frac{n-1}{2}} \leqslant C\left|\phi_{0}\right|_{W^{1, n}}(1+\lambda t)^{-\frac{n-1}{2}}$.

Remark: In the case where $v=0$, that is to say for Euler's equations, $\phi^{\lambda}(x, t)$ is reduced to integral I_{5}, and we obtain:

$$
\left|\phi^{\lambda}(x, t)\right|_{\infty} \leqslant C\left|\phi_{0}\right|_{W^{1, n}}(1+\lambda t)^{-\frac{n-1}{2}}
$$

We are now going to estimate separatly $I_{2}+I_{6}, I_{3}+I_{7}$ and I_{4}.
For that, we shall need the following auxiliary results :
Lemma :

$$
\begin{equation*}
\forall u \in[0,1], \quad 1-u \leqslant \sqrt{1-u} \leqslant 1-\frac{u}{2} \tag{A.2}
\end{equation*}
$$

$$
\begin{equation*}
\forall u \geqslant 0, \quad \sin u \leqslant u, \quad \operatorname{sh} u \leqslant u \cdot e^{u}, \operatorname{ch} u \leqslant e^{u} \tag{A.3}
\end{equation*}
$$

$$
\begin{equation*}
\forall u \geqslant 0, \quad(1+u) \cdot e^{-u} \leqslant C \exp \left(-\frac{u}{2}\right) . \tag{A.4}
\end{equation*}
$$

(ii) Majoration of $\left|I_{2}+I_{6}\right|$.

Using the inequalities (A.3) and (A.5), we easily obtain :

$$
\begin{aligned}
\left|I_{2}+I_{6}\right| & \leqslant C \int_{\sqrt{\lambda}<|\xi|} e^{-|\xi|^{2} t}\left|\hat{\phi}_{0}(\xi)\right|\left(1+t|\xi|^{2}\right) d \xi \\
& \leqslant \int_{\sqrt{\lambda}<|\xi|} e^{-\frac{\lambda t}{2}}|\xi|^{n+1}\left|\hat{\phi}_{0}(\xi)\right| \frac{d \xi}{|\xi|^{n+1}},
\end{aligned}
$$

that is to say:

$$
\text { (A.5) }\left|I_{2}+I_{6}\right| \leqslant C \exp \left(-\frac{\lambda t}{2}\right)\left|\phi_{0}\right|_{W^{1, n+1}} \leqslant C\left|\phi_{0}\right|_{W^{1, n+1}}(1+\lambda t)^{-\frac{n-1}{2}}
$$

(iii) Majoration of $\left|I_{7}\right|+\left|I_{3}\right|$.

We can write :

$$
\begin{aligned}
\left|I_{7}\right| \leqslant C \int_{|\xi|<\sqrt{\lambda}} e^{-|\xi|^{2} t}\left|\hat{\phi}_{0}(\xi)\right| \mid & \left.\sin \frac{t|\xi| \lambda}{2}\left(1-\sqrt{1-\frac{|\xi|^{2}}{\lambda^{2}}}\right) \right\rvert\, \times \\
& \times\left|\sin \frac{t|\xi| \lambda}{2}\left(1-\sqrt{1+\frac{|\xi|^{2}}{\lambda^{2}}}\right)\right| d \xi
\end{aligned}
$$

Thanks to the lemma, we deduce from that :

$$
\begin{aligned}
\left|I_{7}\right| & \leqslant C \int_{|\xi|<\sqrt{\lambda}} e^{-|\xi|^{2} t}\left|\hat{\phi}_{0}(\xi)\right| \frac{t|\xi|^{3}}{2 \lambda} d \xi \\
& \leqslant C \int_{|\xi|<\sqrt{\lambda}} \exp \left(-\frac{|\xi|^{2} t}{2}\right)\left|\hat{\phi}_{0}(\xi)\right| \frac{|\xi|}{\lambda} d \xi \\
& \leqslant \frac{C}{\lambda} \int_{\mathbb{R}^{n}} \frac{|\xi|^{m}}{|\xi|^{m-1}} \exp \left(-\frac{|\xi|^{2} t}{2}\right)\left|\hat{\phi}_{0}(\xi)\right| d \xi \\
& \leqslant \frac{C}{\lambda} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{a}\right)\left|\hat{\phi}_{0}(\xi)\right| \exp \left(-\frac{|\xi|^{2} t}{2}\right) \frac{d \xi}{|\xi|^{m-1}}
\end{aligned}
$$

where $a=m$, if m is even, $a=m+1$ if m is odd.
Choosing $m=n-1$, we find:

$$
\left|I_{7}\right| \leqslant \frac{C}{\lambda}\left|\phi_{0}\right|_{W^{1, n}} \int_{\mathbb{R}^{n}} \exp \left(-\frac{|\xi|^{2} t}{2}\right) \frac{d \xi}{|\xi|^{n-2}}
$$

So,

$$
\begin{equation*}
\left|I_{7}\right| \leqslant \frac{C}{\lambda t}\left|\phi_{0}\right|_{W^{1, n}} \tag{A.6}
\end{equation*}
$$

On the other hand, since $|\xi|<\sqrt{\lambda} \underset{\infty}{ } \lambda$, we get:

$$
\left|I_{3}\right| \leqslant \int_{|\xi|<\sqrt{\lambda}} \exp \left(-|\xi|^{2} t\right)\left|\hat{\phi}_{0}(\xi)\right| \frac{C|\xi|}{\lambda} d \xi
$$

So, as above :

$$
\begin{equation*}
\left|I_{3}\right| \leqslant \frac{C}{\lambda t}\left|\phi_{0}\right|_{W^{1, n}} . \tag{A.7}
\end{equation*}
$$

(iv) Majoration of I_{4}.

Thanks to the inequalities (A.2) and (A.3), we have :

$$
\begin{aligned}
\left|I_{4}\right| \leqslant & \int_{|\xi|>\lambda} \exp \left(-|\xi|^{2} t\right)\left(1+|\xi|^{2} t\right) \times \\
& \times \exp \left(|\xi|^{2} t \sqrt{1-\frac{\lambda^{2}}{|\xi|^{2}}}\right)\left|\hat{\phi}_{0}(\xi)\right| d \xi \\
\leqslant & \exp \left(-\frac{\lambda^{2} t}{2}\right)(1+t) \int_{|\xi|>\lambda}\left(1+|\xi|^{2}\right)|\xi|^{n+1}\left|\hat{\phi}_{0}(\xi)\right| \frac{d \xi}{|\xi|^{n+1}}
\end{aligned}
$$

What finally gives the following inequality :

$$
\begin{equation*}
\left|I_{4}\right| \leqslant C \exp \left(-\frac{\lambda^{2} t}{2}\right)(1+t)\left|\phi_{0}\right|_{W^{1, n+3}} \tag{A.8}
\end{equation*}
$$

(v) At last, let us remark that :

$$
\left|\phi^{\lambda}\right|_{\infty} \leqslant\left|\phi^{\lambda}\right|_{H}\left[\frac{n}{2}\right]+1 \leqslant\left|\phi_{0}\right|_{W^{1, n+2}} .
$$

We then easily deduce from (A.1), (A.5), (A.6), (A.7) and (A.8) the following result :

$$
\begin{array}{ll}
\left|\phi^{\lambda}\right|_{\infty} \leqslant \frac{C}{\sqrt{1+\lambda t}}\left|\phi_{0}\right|_{W^{1, n+3}} & \text { if } n \geqslant 3, \\
\left|\phi^{\lambda}\right|_{\infty} \leqslant \frac{C}{1+\lambda t}\left|\phi_{0}\right|_{W^{1,5}} & \text { if } n=2 .
\end{array}
$$

In order to estimate the derivatives in x of ϕ^{λ}, we just have to do the same work after deriving the linear system (D^{λ}).

So the theorem is proven.

BIBLIOGRAPHY

[1] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, C.P.A.M. 34 (1981) pp. 481-524.
[2] S. Kainerman and A. Majda, Compressible and incompressible fluids, C.P.A.M. 35 (1982) pp. 629-651.
[3] T. Nishida and A. Matsumura, The initial value problem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ. 20-1 (1980) pp. 67-104.
[4] A. LaGHA, Limite des équations d'un fluide compressible lorsque la compressibilité tend vers 0, Pré-pub. Math. Univ. Paris Nord, Fasc. n 37.
vol. $21, n^{\circ} 3,1987$
[5] R. Teman, The evolution Navier-Stokes equations, North-Holland (1977) pp. 427-443.
[6] A. MAjda, Compressible fluid flow and systems of conservation laws in several space variables, Univ. of California, Berkeley.
[7] H. Added and S. Added, Equations of Langmuir's turbulence and non linear Schrödinger equation, smoothness and approximation, Pré-pub. Math. Univ. Paris Nord.
[8] S. Klainerman, Global existence for non linear wave equations, C.P.A.M. 33 (1980) pp. 43-101.
[9] A. Friedman, Partial differential equations, Holt, Rinehart and Winston (1969).
[10] T. Kato, Non stationary flows of viscous and ideal fluids in \mathbb{R}^{3}, Functional Analysis 9 (1972), pp. 296-305.

