@article{M2AN_1987__21_4_605_0, author = {Durier, Roland}, title = {Meilleure approximation en norme vectorielle et th\'eorie de la localisation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {605--626}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {21}, number = {4}, year = {1987}, mrnumber = {921829}, zbl = {0649.41019}, language = {fr}, url = {http://archive.numdam.org/item/M2AN_1987__21_4_605_0/} }
TY - JOUR AU - Durier, Roland TI - Meilleure approximation en norme vectorielle et théorie de la localisation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 605 EP - 626 VL - 21 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1987__21_4_605_0/ LA - fr ID - M2AN_1987__21_4_605_0 ER -
%0 Journal Article %A Durier, Roland %T Meilleure approximation en norme vectorielle et théorie de la localisation %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 605-626 %V 21 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1987__21_4_605_0/ %G fr %F M2AN_1987__21_4_605_0
Durier, Roland. Meilleure approximation en norme vectorielle et théorie de la localisation. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 4, pp. 605-626. http://archive.numdam.org/item/M2AN_1987__21_4_605_0/
[1] L'analyse non linéaire et ses motivations économiques, Masson (1984). | MR | Zbl
,[2] The structure of admissible points with respect to cone dominance, Journal Optimization Theory and Applications, 29 (1979) 573-614. | MR | Zbl
, ,[3] Finding efficient solutions for rectilinear distance location problem efficiently, European Journal of Operational Research, 6 (1986), 117-124. | MR | Zbl
, and ,[4] On efficient points and Fermat-Weber problem, Working Paper, University of Dijon (1984).
,[5] Weighting factor results in vector optimization, Working Paper, University of Dijon (1985). | Zbl
,[6] Geometrical properties of the Fermat-Weber problem, European Journal of Operational Research, 20 (1985), 332-343. | MR | Zbl
, ,[7] Sets of efficient points in a normed space, Journal of Mathematical Analysis and Applications, à paraître. | Zbl
, ,[8] Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630. | MR | Zbl
,[9] Location theory, dominance and convexity : some further results, Operations Research, 28 (1980), 1241-1250. | Zbl
, , ,[10] Structure of the efficient point set, Proceedings of the American Mathematical Society, 95 (1985), 433-440. | MR | Zbl
,[11] La convexité dans les mathématiques de la décision, Hermann (1979).
, ,[12] Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. | MR | Zbl
,[13] Étude et utilisation de normes vectoriellesen analyse numérique linéaire, Thèse de Doctorat ès Sciences, Grenoble (1968).
,[14] Meilleure approximation en norme vectorielle et minima de Pareto, Modélisation Mathématique et Analyse Numérique, 19 (1985), 89-110. | Numdam | MR | Zbl
,[15] Convex Analysis, Princeton University Press (1970). | MR | Zbl
,[16] Some properties of location problems with block and round norms, Opérations Research, 32 (1984), 1309-1327. | MR | Zbl
, , ,[17] Characterizing efficient points in location problem under the one-infinity norm, Locational analysis of public facilities, ed. J. F. Thisse et H. G. Zoller, North Holland, Studies in mathematical and managed economies, 31, (1983), 413-429.
, ,[18] Location theory, dominance and convexity,Operations research, 21 (1973), 314-321. | MR | Zbl
, ,[19] Efficient points in location problems, AIEE Transactions, 9 (1973), 238-246. | MR
, , ,[20] On the connectedness of the set of efficient points in convex optimization problems with multiple or random objectives, Mathematische Operationsforschung und Statistik, ser. Optimization, 15 (1984), 379-387. | MR | Zbl
,[21] Optimality and efficiency, John Wiley and Sons (1982). | MR | Zbl
,