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OF GALERKIN APPROXIMATIONS FOR ELLIPTIC PROBLEMS <*)

by Mitsuhiro T. NAKAO (*)

Communicated by J. BRAMBLE

Dedicated to Prof. Seiiti Huzino on the occasion of his 60th birthday.

Abstract. — We consider superconvergence for an averaged gradient in a Garlerkin method,
for the Dirichlet problem on a square, based on tensor products of continuons piecewise
polynomial spaces. We prove that, when we use odd degree polynomials, the approximation by
averaging yields superconvergence of order hr + 1 in L00. The theoretical results are illustrated by
numerical examples.

Résumé. — Nous considérons la superconvergence pour un gradient moyen de la méthode de
Galerkin, pour les problèmes de Dirichlet sur un carré, basée sur les produits tensoriels des
espaces de fonctions continues, polynômes par morceaux. On montre que, lorsque nous
employons les polynômes de degré impair, l'approximation par la technique moyenne donne la
superconvergence d'ordre hr + l en norme L°°. Les résultats théoriques sont accompagnés
d'exemples numériques.

1. INTRODUCTION

It is known that, when we construct a Galerkin approximation for the
boundary value problem using piecewise polynomials, various superconverg-
ence phenomena are ̂ bservecUat certain^pecific4X)intsJn±heJomain X[2] —
[14], [18]). Particularly, superconvergence properties for the derivative of
the approximate solution are considered in [3, 4, 8, 9, 10, 13, 14, 18]. In
these studies, Krizek & Neittaanmàki [8], using the resuit in [15], presented
a theoretical resuit for the technique of averaging gradients at the mesh
points which improves the accuracy of the derivative of the Galerkin finite
element solution using linear triangular éléments. That is, they proved that
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680 M. T. NAKAO

the new approximation obtained by the averaging technique is a supercon-
vergent approximation to the exact gradient in the L2-norm sensé. Also
Levine [10] proposed another averaging method which admits superconver-
gence estimâtes in the mean-square sensé of the gradient at the midpoint of
element edges for linear finite element methods-

In this paper, we consider a similar problem described in [8] for a
Galerkin method to the elliptic équations on the unit square with Dirichlet
boundary condition based on tensor products of continuous piecewise
polynomial spaces. We attempt to improve upon the estimâtes derived in [8]
and generalize the results to the case of higher order éléments. The main
resuit of the paper is that the superconvergence phenomenon of the gradient
occurs, rather surprisingly, only in case of using odd degree polynomials.

In the following section, we present the elliptic boundary value problem
and some notation to be used in later sections, and then define the Galerkin
approximation. In § 3, first we show that, in the one dimensional case with
the use of odd degree piecewise polynomials, the average values of the left
and right limits of the approximate derivatives at the internai mesh points
are superconvergent. On the other hand we prove that the global
convergence rate of the gradient of the différence between the one
dimensional projection of the exact solution and the Galerkin approximation
is one order higher than the optimal rate. Next, we describe, in § 4, an a
posteriori method to obtain the global superconvergence approximation
utilizing the results in the previous section and the superconvergence
estimâtes at Gauss points. Finally, in §5, we illustrate some numerical
examples which confirm the superconvergence properties derived in § 3 and
§ 4. We also present a counterexample which shows that the averaging
technique does not yield superconvergence in the case of even degree
polynomials.

2. THE ELLIPTIC PROBLEM AND THE GALERKIN METHOD

Consider the following elliptic boundary value problem on a rectangular
domain H = (0,1) x (0, 1) in R2.

LU=B — Au + bu — ƒ in O , ^ \\

u = o on an . }

We assume that b(x, y) is in Leo(O) and nonnegative. Then for each
/ e Z / ( O ) ? 1 < J ? < O O , (2.1) has a unique solution u e W^(ü). Here
W™(Cl) dénotes the usual Z/-Sobolev space of order m on fi.

Now, in order to define the Galerkin approximation to (2.1), we
introducé the approximation spaces. Let r ê 1 be a fixed integer and
/ = (0? 1). For each set E cl, Pr(E) dénotes the set of polynomials of
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SUPERCONVERGENCE OF GALERKIN APPROXIMATIONS 681

degree at most r on E. Let hx : 0 = x0 < xx < • •. <; xN = 1 and Sy :
0 = y0 -< j ^ < • • • <: yM = 1 be quasiuniform partitions of /. For simplicity
we set 8̂  = hy. Let /, = (x, _ u xt), ht ~ xt - xi_l and h = max ht. Also

1 ^ Î m N

set ^ = {ƒ f x /y ; 1 ^ ï, ƒ ^ A^} . Fur ther let

^ o r ( S , ) = {t> e C a h t ^ e / > , ( ƒ , ) , U / i A f , » (0 ) = i? ( l ) = 0}

and

We now define the partition of fi by 8 = ô̂  ® 8̂  and let

Hère 8, 8̂  and 8̂ , will be usually suppressed. Then we define the Galerkin
approximation u e M to (2.1) by

B(U,v)= (ƒ,!>), t ?e^T , (2.2)

where

/, i?)= (VU,

and (.,.) is the L2-inner product on n . From now on, for any domain A in
R1 or /?2, (., «^ will dénote the L2-inner product on A. Also dénote the
usual Z/-Sobolev space of order m on A by W™(A) or W™0(A) for
1 ^ p ^ oo and an integer m ^ 0. Particularly for /> = 2, by convention,
WgiA) or W^0(^4) are written as Hm(A) or H^(A), respectively. Further,
we adopt the usual Sobolev norm as the norm in W™(A) and, when
A = fi, ||.||wm(n) is simply denoted by ||.||wm.

Now we give the définition of the Gauss points. First, r Gauss points on / :
0 < TX < • • • <: Tr <; 1 are the roots of the following Jacobi polynomial.

JrÇx) - - ~ r fT(t - T T H , -(23)

where c is a constant chosen so the coefficient of xr in (2.3) is 1. Next, for
each 1 ^ / ^ N, the Gauss points *lJt on /̂  are defined as the affine
transformation of ik to ïi :

*i* = ^ -1 + TJt ̂ - » ! = k ^ r . (2.4)

Then for each subrectangle p = I{ x l} e ffî^ the Gauss points on p are the
set of ail points of the form (xik, y^), 1 ^ k, î ^ r, Hereafter, we use the
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682 M. T. NAKAO

symbol C to dénote a generic positive constant independent of h and not
necessarily the same at any two places.

3. SUPERCONVERGENCE AT INTERNÂL MESH POINTS

For any g G H$(I), we define a projection Pg e M§ by

i99- (Pgy,v')j = 0, veJtr
Q. (3.1)

Then, notice that the following property holds [6]

Xi) = g(Xi), o ̂  i ^ N . (3.2)

For each i, 1 ^ i =ê TV - 1, set ƒ/* = (xt _uxi + l) = It U It + x U {xt} . We
now define for a function \\t which is smooth on Ij* except at x(,

A * = -^—r W(*i - ) + <*'(*,- + ) } ,
1

where a(- = hi/hi + 1.
The following estimâtes play an essential rôle in the superconvergence

results in this paper.

THEOREM 1 : If r is odd and g e Wr
œ

+2(I^), 1 ^ i ê N - 1, then

where ht = m a x {hi7 hi + 1 ) .

Proof: First, define a linear functional it on W^"4"2^*) by

t^^Vix^-DAQr^), (3.3)

w h e r e gr<|> e P ^ / , - ) H P r ( / i + 1 ) is de t e rmined by

• ( • ' - (Gr • ) ' , » ' ) / , = 0 , i ? e P r ° ( / , - ) . / = i , i + l ,

) * ( ) î l î + 1

Notice that, from (3.2), Pc(> = Qr$ on 7f* for any 4> G H^(I).
We now fix <|> 6 P r + 1 ( / f ). Then, clearly <(> = Qr + 1 <|>.

F o r any w G Pr_l(Ij), j = i,i + 1, let

f* X-JC. -_ ! f
w dx .
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SUPERCONVERGENCE OF GALERKIN APPROXIMATIONS 683

Noting that v e /*?(/,-) and v' = w — const., we have by (3.4)

This implies that (<*>' - (Qr$)f){x) = K,,Jr{h]-\x - x ^ . ^ ) for x G /, ,
where ƒ, is Jacobi polynomial defined by (2.3) and Kj is some constant.
Therefore, we have for each Gauss point on Ij*

( * ' - ( & • ) ' ) ( * * ) = <>, 1 ^ k ^ r,

• ' ( Ö + ) ' ) ( ) o; î ^ i

where x/fc and xi + iik are defined by (2.4). Hence, we have the représenta-
tions

(3-6)

where a, and ai + 1 are constants. However, <$>'(x) must be a single
polynomial throughout Ij*. Thus, we have a, = fl,- + i and, by (2.4)

V(xt - ) = alfa - xn) x . . . x (*,- - JC(>) + (g r *)'(xf - )

= fli ^ ( 1 - T l) X • • • X (1 - Tf) + (fir * ) ' f e - ) .

Furthermore,

= ( - 1 / a, h\+l Tl X • • • X Tr + (Gr+) ' (^ + ) -

Notice that, from the property of the roots of Jacobi polynomial (2.3),
Tj x • • • x Tr = (1 — TX) x • « • x (1 — Tr).. Therefore, if r is odd and at =£ 0,
then by (3.7) and (3.8) we obtain

^ + )}
f f + i

If Û( = 0 then clearly ör<l> = <t> which yields 4>'(^) = Ö(-(Gr*)- Conse-
quently, for any <t>ePr + i ( /*) , we have -̂(4>) = 0. Thus, applying the
Peano kernel theorem or the Bramble-Hilbert Lemma, we can easily obtain
the desired estimâtes.

vol. 21, n 4, 1987
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Now, for a function 4> G HQ(O,) we define a projection P x <|> e
Pxu = P<i>(*, y) for each fixed j e / . Pyu e Jt^ihy) is similarly defined.
Then, clearly, we have Py Px§ = PxPy$ e Jt (S). The following lemma is
obtainable using the results in [16] and [17]. However, we would like to
present a complete proof, in order that the argument be self-contained and
since the estimâtes can be derived by a considerably simpler technique in the
present case.

LEMMA 1 : Let u and U be solutions to (2.1) and (2.2), respectively. If
u e Wr

p +
 2(£l)y 2 ^ p <: oo, then} for sufficiently smallh,

Proof: By the triangle mequality, we have

\\u~U\\LP ^ \\u~PyPxu\\LP+ \\PyPxu-U\\LP,

and the first term of the right hand side can be estimated from well-known
results in the one dimensional case ; that is,

\\u-PyPxu\\LP S Ch'^\\u\\K+i. (3.9)

We now estimâtes the second term. Set t\ = PvPxu - U. For each q with
1 11 < ^ g 2 and —i— = 1, and for any <J/ 6 L'(ft), consider the solution
P <l

§ G Wq(Cl) of the following auxiliary problem :

pt> = * in a' (3.10)
1 <(> = 0 on d£l. V '

Then for any <j> e Jt, we have by (2.2)

, ^ M - « , * ) . (3.11)

Let 4> be the solution of

B(v, * - 4») = 0 , c e J . (3.12)

Then, by (3.11) and (3.1)

(i), *) = (P,, ux - «„ 4>J + (Pxuy - u,, 4>y) + ( P , P x u - u , bî?)

S C (\\Pyux - ux\\LP+ \\Pxuy- uy\\LP

(3.13)
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Further, by virtue of well-known estimâtes for the solution of (3.12) and
elliptic regularity related to the équation (3.10), we obtain, for sufficiently
smallft,

where we have used the Sobolev estimate || <f> || Hi ^ C || <)> || wi. Combining
this with (3.13) and (3.9), we have

which complètes the proof.
Next, we show that the gradient of the différence between the composite

projection Py Px u and the approximate solution U has the rate of converg-
ence with one order higher than the optimal rate. Although this f act is easily
derived for r = 3 from the estimâtes in [7] and the quasi-uniformity of the
partition, however, the arguments in [7] are not applicable to the present
case, i.e. for r i= 1.

LEMMA 2 : Let u and U be solutions to (2.1) and (2.2), respectively. If
u E Wp + 3(il)y 2«z:p ^ oo, then for sufficiently smallh

IIVCP^a-COH^ S Chr + ii

Proof : For fixed 1 ^ ij ^ N, set p = / , x / ; . Let <x\ = Py Px u - U
and define f| G Lœ(a) by

- I ! on p ,
otherwise .

We now choose 4> G M satisfying

- 4 > ) , Vt?) = O , vej(. (3.14)

Hère, Vfj is not the gradient in the sense of distributions but we interpret it
as follows :

I VT| on p '
otherwise .

vol. 21, n° 4, 1987
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From (3.14), (2.2) and (3.1) we have

= (v-n, v(f| - 4>)) + (VT 4

I , V4>)

= (V(Py Px u - u), V4>) - ((M - CO,

= {uxx - Pyuxx + uyy - Px Uyy, <j>) - (M - U,

where g is a positive number such that - + - = 1. We now estimate
P q

| |4>||L9. FOV any i|/ e LP(O,), let <(> e H^(n) O w£(a) be a solution of the

following problem.

f-A4> = i|i in n , ( 3 1 6 v

1 <t> = 0 on ôfî. ^ j

Further, choose v e <J? satisfying

( V ( < | > - Ï ; ) , Vw) = 0 , w t J i . (3.17)

Then, by (3.14) we have

L ( p ) L o ( p ) . (3.18)

Using the W^-stability of the finite element solution which is implied by the
results in [16, 17] and an inverse property, we have

Furthermore, by the Sobolev's lemma and eliiptic regularity for (3.16),

Thus, from (3.18), we obtain

Ê C l l v ^l l i . ' (p )> 1 < ? S 2 . (3.19)

M2 AN Modélisation mathématique et Analyse numérique
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On the other hand, notice that

Combining the above with (3.15) and (3.19), and applying Lemma 1
concludes the proof of the lemma.

Now, for 1 = i, ƒ ^ TV - 1 and a continuous function Ç on /,-* x
If which is smooth on each p c / * x I*, where p is in ât, we define

Furthermore, let

Then, as stated in the following theorem, G(U ;i, j) admits a superconver-
gent approximation to Vw at internai mesh points (xi9 y^ ) . From now on, we
set | 7 | = max Cl'YiI » 1^1) f o r anY y = ("Yi, 72) e R2.

THEOREM 2 : Let r ^ 1 be an odd integer. And let u and U be solutions to
(2.1) and (2.2) respectively, Ifu G W; + 3(H), 2 </? ^ oo, then for sufficient-
ly smallh,

max |V M (* f . , ; yy) -G(C/ ; i , / ) | ^ C ^ ^ 1 ^ ) ! ^ ^ .

Proof: Observe that

- (A-, Px «(^-, y/), ^ Py u{xi9 yj))\

+ | (A, />,«(*,-, j y ) , Ö;> P^ u(xi9 y;))

~G(PyPxu;iJ)\ + | G ( P y P x M ; i , / )

-G(U;i,j)\ . (3.20)

Now, each term of the right hand side of (3.20) can be estimated as follows.
By Theorem 1,

[the first term] ^ Chr + l\\u\\w^+2(/rx/;).

vol. 21, n' 4, 1987
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Taking into account (3.2), it is easily seen that the second term vanishes.
Furthermore, from Lemma 2 we have

[the third term] ^ \\V(PyPxu-U)\\LtB ^ Chr+1\\u\\wr+ 3 •
P

Thus, noting that || u \\ wr+2 ^ C || u || wr+$ by the Sobolev's lemma, we obtain
the desired estimate.

The estimate in Theorem 2 is one order better than the global optimal
estimâtes for V(w — U),

4. SUPERCONVERGENCE FOR ARBITRARY POINTS

In this section, it is shown that a posteriori local procedures, utilizing the
results in previous section, can be carried out so as to provide O(hr + 1)
approximations to Vu at arbitrary points in the domain. Also, simple
quadratures, using these local approximations, are exhibited which yield
O(hr + 2) convergence to u itself.

Now let P be the projection defined by (3.1). Then, the following
superconvergence estimâtes at Gauss points are obtained from the property
(3.5).

\g'(xik)- (Pg)'(xik)\ ^ C ^ + 1 | |^| |^+2( / ( ) (4.1)

for 1 ^ i ^ N and 1 ^ k ^ r, where xik is defined by (2.4). We extend
this resuit for two dimensional case to get the following estimate.

LEMMA 3 : Let u and U be solutions to (2.1) and (2.2), respectively. If
u e WJ0

+3(n) and h is sufficiently small, then

|V(M-[/)(*,•„ y, t)| Si Chr+l\\u\\wr^

for 1 ^ i,j ^ N and 1 ^ k, î ^ r, where {xik,y^) is a Gauss point on
It x Ij defined in § 2.

Proof: First, observe that

\V(u-U)(xik,yjt)\ ^ \V(u-PyPxu)(xik,yjî)\
+ \\V(PyPxu-U)\\Lœ. (4.2)

Next, by noting that

V(u - Py Px u) = ( (ux - Py ux) + A (py u - Px Py u),

M2 AN Modélisation mathématique et Analyse numérique
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SUPERCONVERGENCE OF GALERKIN APPROXIMATIONS 689

we have

\V(u-PyPxu)(xik,yji)\ ^ \\ux-Pyux\\Ln+\\uy-Pxuy\\L„

— {PyU- Px Pyu)(xik, ylt)
dx
d

• (43)

Therefore, the desired estimâtes follow by (4.2), (4.3), Lemma 2, (4.1) and
the error estimâtes for the solution to (3.1).

Now» by the use of the identity

u-U = {u-Pxu)+ (Pxu-PyPxu) + (Py Pxu-U) , (4.4)

we have, for each y e / ,

j-(u-U)(xik,y)

Hence, Lemma 3 can be extended in the following way. That is, under the
same assumptions in Lemma 3,

JL(u~U){xikiy)
aX

Chr+l\\u\\wt+i (4.5)

for 1 ^ /, / = N, 1 = ky2 ^ r and any (x, v) e fl. Furthermore, from
Theorem 1 and Lemma 2 we have

\\V(PyPxu-U)\\La>)

Since similar estimâtes are also derived with respect to y, we can extend
Theorem 2 in previous section and obtain that

^ Chr + 1\\u\\wr^ (4.6)

for 1 ë i, j â N, 1 â k, î S r and (x, y) e Ü..
Now, using these results we construct a superconvergent approximation

to the gradient of M on each subrectangle peâl. For fîxed 1 ^ i,
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j S N, we define G( t / )= (U*, U*), where U*, U* e /%(/,) (g) Pr(/,-), as
the solution of following linear équations

G(U)(Xi,yj) = G ( t / ; i , y ) ,
G(UKxlk,y,t) = VU(x,k,y,t) , 1 ^ kj É r,

G(U)(xik,y,) = ( ^ j ( * i * , ƒƒ),£/, #(*,*, y,)) , 1 S * =S r, (4-7>

1 S f S r .

Hère, when i = N we replace xf by xN_x in (4.7) and j^- by yN_i-
Thus we can détermine G(U) for all p e l . Therefore, G(U) is

considered as a function on Cl having, in gênerai, discontinuity on each mesh
line. The following theorem implies that G(U) is an O(hr + 1) superconver-
gent approximation to Vw in the L°°-norm sensé.

THEOREM 3 : Let r ^ 1 be an odd integer. And let u, U and
G(U) be solutions to (2.1), (2.2) and (4.7), respectively. If u e W'^il),
then for sufftciently small h

||Vu - G(t/)| |L« (p) S Cftr + 1 | | « | | ^ + 3 , p e » .

Proof: In order to express clearly the degree of polynomials used, we
dénote P by P r . Thus, Px is denoted by Pr

x and Py by P£. Noting that

— Pr
x
 + lPr

y u e Pr(h) ® Prifi) w e h a v e

dx

^ C max , (4.8)

where 5p dénotes the set of all interpolation points which détermines
G(U) on p e M in (4.7). For each (x,y) e 5p, by (4.7), Theorem 2, (4.5)
and (4.6) it follows that

| («.--
( 7 i t \ f î  J<~, f r 4- 1 ii n f A ç\\

dx

Also it is easily seen, from the error estimâtes for the projections, that

â C/z' + 1 |M|w ; o +3 ( p ) . (4.10)
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SUPERCONVERGENCE OF GALERKIN APPROXIMATIONS 691

Thus, (4.8), (4.9) and (4.10) and the triangle inequality yield

\u?--?-Pr
x
 + 1Pyu

dx y

Combining this with the following triangle inequality we conclude the
desired estimâtes for jc-derivative

I x dx
^ \ \ U P Pv

L°°(p) II dx * y

+ \\— (Pr+1 Pr U - Pr U
\\ dx y y Lœ(P) II y \ dx / dx IL^CP)*

du
Since we can estimate similarly for U* , this complètes the proof.

Further, in particular for r ^ 3, using G(U) defined in (4.7) we can
pro vide a superconvergent approximation U for the solution u of (2.1) itself
which is determined locally by

for each 1 ^ /, j ^ N and (x, y) e It x /y.

THEOREM 4 : Assume the hypotheses of Theorem 3 and let Ü be the
function defined by (4.11) on each p e f . Ifr ^ 3 and h is sufficiently small,
then

Proof: For any (x, y) e p = /, x /;-, by (4.11) we have

=§ A H Vu - G (^l l t - tp, + I (« - C/)(J:,- _ i, y> _ i) I

On the other hand, by estimâtes in [7] for r ^ 3

Therefore, the proof of the theorem immediately follows from Theorem 3.
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Remark : It might be expected that the superconvergence phenomena
described in the paper are also valid for somewhat more gênerai elliptic
équations on the rectangular domain. However, observing the proof of
Lemma 2, the techniques used hère are peculiar to the équations of the
form(2.1).

5. NUMERICAL EXAMPLES

In order to illustrate the results described in § 3 and § 4, we present some
numerical examples.

Example :

f— Aw = sin TTX . sin iry , (JC, y) e H , (5 \\
1 M = 0 , (x9y)ed£ï, K ' }

where O = (0, 1) x (0,1).
The exact solution to (5.1) is

u (x, y ) = sin TTX . sin iry .

We solved (5.1) numerically using the scheme (2.2) and calculated the
various errors for several r and iV. We show these results in Tables 1 to 4,
The meanings of each symbol are as follows :

LEFT = max j I ± (u - U)(Xi - , yf)
1 s i,j £ N -1 l l ÓX

\j-y(u-U)(Xi,yj-)\},

RIGHT = max J I ± (u - U)(x, + , ys)
1 a i,j a N-i U ÖX

M E A N = max { |Vu(x„ yt) - G(U ; i, / ) | } ,
l S i , ; S A f - l

GAUSS = max { | V(M - U)(xik, yjt)| } ,
1 i î , / S JV
Uifc,fir

OTHER = max { | V(w - U){xt - h/4, yf - h/4) \ } ,
1 =i ij =i N

NEWGRAD = max { | (Vu - G(£/))(^ - A/4, yy - A/4)| } .
l ^ i,y g TV
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SUPERCONVERGENCE OF GALERKIN APPROXIMATIONS 693

Hère, we used the partition of / into N equal parts.

TABLE 1

Improvement of errors by averaging (for r = 1)

AT LEFT(= RIGHT) ME AN

8
12
16

0.312E-1
0.208£-l
0.156E-1

0A9ÖE-2
0.880E-3
0.501£-3

TABLE 2

Non-improvement of errors by averagïng (for r = 2)

N LEFT(= RIGHT) ME AN

4
6
8

0.723£-2
0.346Ê-2
0.198S-2

0.549£-2
0.308E-2
0.187£-2

TABLE 3

Errors at Gauss points (= GAUSS)

N r = l ' ( * ) . r = 2 (** )
4 0.713£-2 0.562£-3
6 0.342E-2 0.176E-3
8 0.198E-2 0.755£-4

TABLE 4

Improvement of errors by procedure (4.7) (/or r = 1)

N

« •

12
16

OTHER

Q.153E4
0.103£-l
0.111E-2

NEWGRAD

o -m.Rj).
0.154E-2
0.877£-3

Tables 1 and 4 illustrate the superconvergence asserted in Theorems 2
and 3, respectively. Table 2 suggests that we cannot expect the improvement
of the errors by the averaging procedures in case of using even degree

(*) TJ - 0.5, (**) T, = 0.5 - 1 /7Î2 , T2 = 0.5 + 1 / VÏ2.
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polynomials. Further, Table 3 illustrâtes the superconvergence of deriva-
tives at Gauss points proved in Lemma 3.
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