Homogenization limits of diffusion equations in thin domains
ESAIM: Modélisation mathématique et analyse numérique, Tome 22 (1988) no. 1, pp. 53-74.
@article{M2AN_1988__22_1_53_0,
     author = {Damlamian, Alain and Vogelius, Michael},
     title = {Homogenization limits of diffusion equations in thin domains},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {53--74},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {22},
     number = {1},
     year = {1988},
     mrnumber = {934701},
     zbl = {0672.73009},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1988__22_1_53_0/}
}
TY  - JOUR
AU  - Damlamian, Alain
AU  - Vogelius, Michael
TI  - Homogenization limits of diffusion equations in thin domains
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1988
SP  - 53
EP  - 74
VL  - 22
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1988__22_1_53_0/
LA  - en
ID  - M2AN_1988__22_1_53_0
ER  - 
%0 Journal Article
%A Damlamian, Alain
%A Vogelius, Michael
%T Homogenization limits of diffusion equations in thin domains
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1988
%P 53-74
%V 22
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1988__22_1_53_0/
%G en
%F M2AN_1988__22_1_53_0
Damlamian, Alain; Vogelius, Michael. Homogenization limits of diffusion equations in thin domains. ESAIM: Modélisation mathématique et analyse numérique, Tome 22 (1988) no. 1, pp. 53-74. http://archive.numdam.org/item/M2AN_1988__22_1_53_0/

[1] D Caillerie, Homogénéisation des équations de la diffusion stationnaire dans les domaines cylindriques aplatis R A I R O Analyse Numérique, 15 (1981), pp 295-319 | Numdam | MR | Zbl

[2] D Caillerie, Thin elastic and periodic plates Math Methods Appl Sci , 6 (1984), pp 159-191 | MR | Zbl

[3] A Damlamian, M Vogelius, Homogenization limits of the equations of elasticity in thin domains SIAM J Math Anal , 18 (2) (1987), pp 435-451 | MR | Zbl

[4] E De Giorgi, Quelques problèmes de Γ-convergence, in proceedings of the Conference Computing Methods in Applied Sciences and Engineering, Versailles 1979 (R Glowinski and J L Lions eds ), North Holland, 1980, pp 637-643 | MR | Zbl

[5] R Kohn - G W Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media (J R Ericksen, D Kinderlehrer, R Kohn, J L Lions eds ) IMA Volumes in Math Appls, 1, Springer, 1986, pp 97-125 | MR | Zbl

[6] R Kohn, M Vogelius, A new model for thin plates with rapidly varying thickness II a convergence proof Quart Appl Math , 43 (1985) pp 1-22 | MR | Zbl

[7] K A Lurie, A V Cherkaev, Exact estimates of the conductivity of composites formed by two isotropically conducting media taken in prescribed proportions Proc Royal Soc Edinburgh, 99A (1984), pp 71-87 | MR | Zbl

[8] F Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique 1977/1978 Département de Mathématiques, Université d'Alger

[9] F Murat, G Francfort, Homogenization and optimal bounds in linear elasticity Arch Rat Mech Anal , 94 (1986), pp 307-334 | MR | Zbl

[10] L Tartar, Cours Peccot, Collège de France, Paris, 1977

[11] L Tartar, Estimations fines des coefficients homogénéises, in Ennio De Giorgi's Colloquium (P Kree ed), Pitman Research Notes in Math, Pitman, 1985 | MR | Zbl