Gilbert, Jean Charles
Mise à jour de la métrique dans les méthodes de quasi-Newton réduites en optimisation avec contraintes d'égalité
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 22 (1988) no. 2 , p. 251-288
Zbl 0657.65087 | MR 945125
URL stable : http://www.numdam.org/item?id=M2AN_1988__22_2_251_0

Bibliographie

L. Armijo (1966. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics 16/1,1-3. MR 191071 | Zbl 0202.46105

J Blum, J. Ch. Gilbert, B. Thooris (1985). Parametric identification of the plasma current density from the magnetic measurements and the pressure profile, code IDENTC Report of JET contract number JT3/9008.

J. F. Bonnans, D. Gabay (1984. Une éxtension de la programmation quadratique successive. Lecture Notes in Control and Information Sciences 63, 16-31. A. Bensoussan, J. L Lions (eds). Springer-Verlag. MR 876712 | Zbl 0559.90081

C. G. Broyden (1969). A new double-rank minimization algorithm. Notices of the American Mathematical Society 16, 670.

C G. Broyden, J. E. Dennis, J. J. More (1973). On the local and superlinear convergence of quasi-Newton methods. Journal of the Institute of Mathematics and its Applications 12, 223-245 MR 341853 | Zbl 0282.65041

R. H. Byrd (1985). An example of irregular convergence in some constrained optimization methods that use the projected hessian. Mathematical Programming 32, 232-237. MR 793692 | Zbl 0576.90079

R. H. Byrd, R. B. Schnabel (1986). Continuity of the null space basis and constrained optimization. Mathematical Programming 35, 32-41. MR 842632 | Zbl 0598.90072

T F Coleman, A. R. Conn (1982 a). Nonlinear programming via an exact penalty function: asymptotic analysis. Mathematical Programming 24, 123-136. MR 674627 | Zbl 0501.90078

T. F. Coleman, A. R. Conn (1982 b). Nonlinear programming via an exact penalty function: global analysis. Mathematical Programming 24, 137-161. MR 674628 | Zbl 0501.90077

T. F. Coleman, A. R. Conn (1984. On the local convergence of a quasi-Newton method for the nonlinear programming problem. SIAM Journal on Numerical Analysis 21/4, 755-769. MR 749369 | Zbl 0566.65046

J. E. Dennis, J. J. More (1974) A characterization of superlinear convergence and its application to quasi-Newton methods Mathematics of Computation 28/126, 549-560. MR 343581 | Zbl 0282.65042

J. E. Dennis, J. J. More (1977). Quasi-Newton methods, motivation and theory. SIAM Review 19, 46-89. MR 445812 | Zbl 0356.65041

R. Fletcher (1970). A new approach to variable metric algorithms. Journal 13/3, 317-322. Zbl 0207.17402

R. Fletcher (1981). Practical Methods of Optimization Vol. 2 : Constrained Optimization. John Wiley & Sons. MR 633058 | Zbl 0474.65043

D. Gabay (1982a). Minimizing a differentiable function over a differential manifold. Journal of Optimization Theory and Applications 37/2, 177-219. MR 663521 | Zbl 0458.90060

D. Gabay (1982b). Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization. Mathematical Programming Study 16,18-44. MR 650627 | Zbl 0477.90065

R. P. Ge, M. J. D. Powell (1983). The convergence of variable metric matrices in unconstrained optimization Mathematical Programming 27, 123-143. MR 718055 | Zbl 0532.49015

J. Ch. Gilbert (1986a). Une méthode à métrique variable réduite en optimisation avec contraintes d'égalité non linéaires Rapport de recherche de l'INRIA RR-482, 78153 Le Chesnay Cedex, France.

J. Ch. Gilbert (1986b). On the local and global convergence of a reduced quasi-Newton method Rapport de recherche de l'INRIA RR-565, 78153 Le Chesnay Cedex, France (version révisée dans IIASA Workmg Paper WP-87-113). Zbl 0676.90061

J. Ch. Gilbert (1986b). Une méthode de quasi-Newton réduite en optimisation sous contraintes avec priorité à la restauration. Lecture Notes in Control and Information Sciences 83, 40-53. A. Bensoussan, J. L. Lions (eds), Sprmger-Verlag. MR 870388 | Zbl 0599.90112

J. Ch. Gilbert (-) (en préparation).

D. Goldfarb (1970). A family of variable metric methods derived by variational means. Mathematics of Computation 24, 23-26. MR 258249 | Zbl 0196.18002

S. P. Han (1976). Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Mathematical Programming 11, 263-282. MR 483440 | Zbl 0364.90097

S. P. Han (1977). A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications 22/3, 297-309. MR 456497 | Zbl 0336.90046

D. Q. Mayne, E. Polak (1982). A superlinearly convergent algorithm for constrained optimization problems. Mathematical Programming Study 16, 45-61. MR 650628 | Zbl 0477.90071

H. Mukai, E. Polak (1978). On the use of approximations in algorithms for optimization problems with equality and inequality constraints. SIAM Journal on Numerical Analysis 15/4, 674-693. MR 497967 | Zbl 0392.49017

J. Nocedal, M. L. Overton (1985). Projected Hessian updating algorithms for nonlinearly constrained optimization. SIAM Journal on Numerical Analysis 22/5, 821-850. MR 799115 | Zbl 0593.65043

M. J. D. Powell (1971). On the convergence of the variable metric algorithm. Journal of the Institute of Mathematics and its Applications 7, 21-36. MR 279977 | Zbl 0217.52804

M. J. D. Powell (1976). Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlinear Programming, SIAM-AMS Proceedings, Vol. 9, American Mathematical Society, Providence, R.I. MR 426428 | Zbl 0338.65038

M. J. D. Powell(1978). The convergence of variable metric methods for nonlinearly constrained optimization calculations. Nonlinear Programming 3, 27-63. O. L. Mangasarian, R. R. Meyer, S. M. Robinson (eds), Academic Press, New York. MR 507858 | Zbl 0464.65042

D. F. Shanno (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation 24, 647-656. MR 274029 | Zbl 0225.65073

R. B. Wilson (1963). A simplicial algorithm for concave programming. Ph. D. Thesis. Graduate School of Business Administration, Havard Univ., Cambridge, MA.

Y. Yuan (1985). An only 2-step Q-superlinear convergence example for some algonthms that use reduced Hessian approximations Mathematical Programming 32, 224-231. MR 793691 | Zbl 0565.90060