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ERROR ANALYSIS FOR SPECTRAL
APPROXIMATION OF THE

KORTEWEG-DE VRIES EQUATION (*)

by Y. MADAY (l) Se A. QUARTERONI (2)

Communicated by R. TEMAM

Abstract. — The conservation and convergence properties o f spectral Fourier methods for the
numerical approximation o f the Korteweg-de Vries équation are analyzed. It is proven thaï the
(aliased) collocation pseudospectral method enjoys the same convergence properties as the
spectral Galerkin method, which is less effective from the computational point ofview. This resuit
provides a précise mathematical answer to a question raised by several authors in the latest years.

Résumé. — Dans cet article on analyse les propriétés de conservation et de convergence de
l'approximation des équations de Korteweg-de Vries par méthodes spectrales de type Fourier. On
montre que la méthode de collocation pseudo-spectrale (sans correction du terme d'« aliasing »)
possède les mêmes propriétés de convergence que la méthode spectrale de Galerkin qui est moins
compétitive du point de vue numérique. Ces résultats donnent une réponse précise à un problème
soulevé ces dernières annéees par de nombreux auteurs.

1. INTRODUCTION

In this paper, we analyze the numerical approximation by Fourier spectral
methods to the Korteweg-de Vries (briefly K.d.V.) équation with periodic
solutions :

(1.1)
du/dt + u bu/bx -h ot 33w/9x3 = 0 , x 6 R , t > 0 ,
u(x + 2-n,t) = u(x,t) , x e R î r > 0 ,

M ( J C , O ) = « V ) > x e R ,
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500 Y. MADAY, A, QUARTERONI

where the initial condition w° is a real valued 2 ir-periodic function of a is a
real non zero parameter.

The Korteweg-de Vries équation was formerly introduced in 1895 by
Korteweg and de Vries [11] to model long, unidirectional, dispersive waves
of small amplitude and» nowadays, it is used to describe phenomena arising
from several different fields of the application of sciences. A survey of these
numerous applications is given, e.g., in Bardos [1].

From a more theoretical point of view, after the early sixthies, the study
of the K.d.V. équation has benefitted from the application of the scattering
theory and from the discovery of many energy intégrais. We refer to the
pioneering work by Miura [14], Témam [22], and the more recent papers of
Bona and Smith [5], Miura [15] and Bardos [1,2]. Moreover, the analogies
with the studies of Hamiltonian Systems that have been focussed lately, have
permitted to extend the applicability of the K.d.V. équation to new
theoretical and physical models. These aspects, and their relevance for the
interaction between pure and applied mathematics, are discussed in a very
instructive review article of Bardos [1].

Numerical approximations of the K.d.V. équation based either on finite
différences and finite éléments methods are abundant in the literature. We
refer, interalia, to the papers by Bona, Pritchard and Scott [4], Bona,
Dougalis and Karakashian [3] and to the références quoted therein. Fourier
spectral methods have been used also in many applications of the K.d.V.
équations in the last decade. We refer, e.g., to the works by Tappert [21],
Fornberg [8], Schamel and Elsâsser [20], Fornberg and Whitham [9], He
Ping and Ben Yu [13] and Pasciak [18].

The classical Fourier-Galerkin method has been used, as well as the more
flexible coîlocation pseudospectial method in which the discrete Fourier
transform is applied to deal with nonlinear terms (see e.g. Canuto,
Hussaini, Quarteroni and Zang [6], chapters 2 and 4). A crucial question
has been raised from several authors, and this is precisely whether the
(aliased) collocation-pseudospectral method retains the same asymptotic
accuracy as the pure Galerkin method. This is a sort of master question
which is récurrent in the context of numerical approximations by spectral
method. In the case of the K.d.V. équation, particularly, this doubt has
induced several authors to introducé new pseudospectral methods with the
aim of regaining the (presumably lost) exponential accuracy (see again
Canuto, Hussaini, Quarteroni and Zang [6], sections 4.5 and 4.6). In this
paper, we provide a précise mathematical answer to the above question. We
prove that the genuine (non dealiased, non skew-symmetric) collocation-
pseudospectral method enjoys the same convergence properties as the
Galerkin method.

In section II we start proving that the Galerkin approximation conserves
the three first energy intégrais of the K.d.V. équation. Then, classical
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KORTEWEG-DE VRIES SPECTRAL APPROXIMATION 501

energy methods allows us to prove that the Galerkin solution converges with
spectral accuracy to the mathematical solution.

In section III, the collocation-pseudospectral approximation is con-
sidered. The related solution f ails to conserve the second energy intégral.
However, convergence with spectral accuracy in any finite time interval
[0, T] can still be shown, by using a much more involved proof. In its
essence, the new proof exhibits first that the pseudospectral solution cannot
blow-up in a small subinterval [0, fa] of [0, T], This property, joined to the
property of consistence of the numerical method, allows us to initialize an
inductive process which yields the desired result on the large time interval
[0, T].

In this paper, we will not be concerned with any time discretization of the
K.d.V. équation. However, we recall that the semi-implicit time advancing
schemes are customarily used for such a kind of équation. These schemes
are computationally convenient since, at each time interval, they yield a
diagonal System in terms of the unknown Fourier coefficients of the spectral
solution. Moreover, for finite time intervals, they are stable without any
restriction on the time and space discretization parameters. We refer the
interested reader to Chan and Kerkhoven [7] where a linear stability
analysis is presented for the K.d.V. équation, to Quarteroni [19] where a
nonlinear stability analysis is carried out for a family of équations of the
same kind and to Bona, Dougalis and Karakashian [3] and the références
quoted therein where extended équations are also considered.

Working along with 2 Tr-periodic functions, we introducé the periodic
Sobolev spaces defined over ]0,2TT[. We first recall the définition of
classical Sobolev spaces. We set

L 2 (0 ,2TT)= | / : ] 0 , 2 T 7 [ ^ C , ||/|| = I T * | f(x)\2 dx^ < ooi ,

and we dénote its scalar product by (. >.)• Now, for any integer
r => 0, we set

| /eL2(0,2ar), | | / | |r= f £ || a7/3*'ï|2"T < «> J ,H'(0,2*ir) = | / e L 2 ( 0 , 2 a r ) ,

and for any real r>0, not in N, the space Hr(0, 2TT) is defined by
interpolation between H£(r)(0> 2 ir) and HE(r) + 1(0, 2 ir) (we dénote here by
E(r) the intégral part of r). Next we consider the subspace C^(0,2 ir) of
Coo(0, 2 ir ) of all functions that are 2 Tr-periodic so as all their derivatives.
Moreover, for any real r ^ 0 , H^(0, 2TT) stands then for the closure of
0^(0, 2 TT) in Hr(0, 2TT). AS pointed out in Lions and Magenes [12], if
r - 1 / 2 is not an integer, then H£(0,2 ir) consists of all functions of
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502 Y. MADAY, A. QUARTERONI

Hr(0> 2 ir) that are 2 ir-periodic so as their derivatives of order ^ r — 1/2.
For any real number r==0, we define Hr(H) as the dual space of
H~r(fl). lts norm is again denoted by | | . | | r .

Finally, if A is an interval of IR and X is a Banach space, for any function ƒ
from R into X, we will define

lx *
te A

With these notations it is known (see Témam [22]) that as soon as
u° belongs to H#(0, 2 TT), with m in N, then the solution to (1.1) satisfies

(L2) " " " ^ l l " 0 ! ! , ) ,

for any T> 0, where the constants r\ solely depend of the terms in bracket.
It is well known, that the family

(1.3) 9k(jc) = (2Tr)-1/2exp(ïfex) , ke Z ,

is orthonormal and complete in L2(0, 2 ir). Thus a natural approximation of
L2(0, 2 ir) by periodic functions will consist of the spaces defined by

(1.4) V iV62N 5 SN = span {<pk9 - N/2 *z k

Let us dénote by PN the operator

N/2

V^GL 2 (0 ,2 i r ) , PNg= ^ gk<pk
k=-N/2

with
ri-*

(1.5) g k = g { x ) ^ k { x ) d x , keZ.

Since PN is in f act the orthogonal projection operator over S^ we have
equivalently

(1.6)
JO

For all g in L2(0, 2TT), (PJVÓONSN converges to g. Moreover, for any

r=*s, r&O one has (see, e.g. Jackson [10], Pasciak [17])

(1.7) V0eH&(O,2ir), \\g - PN g\\s ̂  cN°-r\\g\\r.

(Throughout this paper, c will dénote a positive constant, independent of N,
not necessarily the same in different contexts).
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Besides, all the norms defined by the imbedding of 8N into H# (0, 2 TT ) are
equivalent since SN is a finite dimensional subspace of H# (0, 2 ir) ; more
precisely we can readily see that

(1.8) V (r, s) e (UT f with r ^ s9 V<p e SN ,

The second inequality is known as « inverse inequality ».
We finally notice that

N/2

(1.9) V 0 e S „ , \\g\\\= £ (l + k2)g2
k^gl +

k=-N/2

This property will be frequently used in the sequel.

II. ANALYSIS OF THE FOURDER-GALERKIN APPROXIMATION OF THE K.d.V.
EQUATION

A spatial approximation (continuous in time) of problem (1.1) based on
the Fourier-Galerkin method reads as follows :

Find a mapping uN : [0, T] -• SN such that

(IL1)

Vi|/ G SN , W, 0 ^ t ^ T, (duN/dt + uN duN/dx + a d3uN/dx3, i|/) = 0 ,

This entaüs a nonlinear System of O.D.E.'s for the Fourier coefficients
(ûN)k(t) of the solution uN. We present now the main properties enjoyed by
the above Fourier-Galerkin approximation. They are concerned with the
concepts of conservation, stability, uniqueness and convergence.

LEMMA II. 1 : There exists a unique solution uN to problem (II.l).
Moreover this solution conserves the three first energy intégrais ofthe K.d.V.
équation, namely

(II.2) (3/30

(II.3) (3/30

(114) (3/30

vol. 22, a' 3, 1988
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Proof: The existence of a maximal time t0, 0 < t0 ̂  T such that, for ail
t <t0, there exists a unique solution wN(/) to problem (II.l) is a classical
resuit of the theory of differential Systems. The problem is to get the
existence for an « arbitrary » time t0, or equivalently to prove that one can
take t0 = T. This resuit will be achieved owing to (IL 3), which ensures that
the solution cannot blow-up.

Since the initial condition u° is real, then uN(0) is real too. We deduce
that uN(t) is real for any t < t0 from the uniqueness of the solution to
problem (II.l).

In order to show (II.2), let us first choose i)> = 1 as a test function in (II.l).
We get

(d/dt) F" uN(x,t)dx+ (1/2) \2\du2
N/Zx){x,t)dx +

Jo Jo

Jo
" (b3uN/bx3)(xyt)dx =

using the periodicity of uN, we deduce then (II.2). Choosing now
\\f = uN in (II. 1), we obtain

(11.5) (9/90 {uN(x,t)fdx+ (1/3) (du3
N/dx)(x,t)dx +

Jo Jo

+ a (uNd3uN/dx3)(x,t)dx = O.
Jo

Integrating by parts and using the periodicity of uN yields

f27T f2 ir
(wN a^ jv /a^ : 3 )^ , t)dx=- (1/2) a /8x (3w N / ax ) 2 (x, 0 * c = 0 .

Jo Jo

Similarly we have

|"2ir

Jo

We dérive now (II. 3) from (II. 5). Integrating (II. 3) between 0 and
t0 proves that no blow-up occurs as time t0. More precisely for any t,
0 =Ï t < t0, we dérive

(11.6) \\UN(* '011 = \\UN(* » 0)H ̂  ||w°|| .

whence t0 is equal to T and we can state that the existence and uniqueness of
the solution uN holds for any time t, 0 =s t =s T.
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In order to prove now (II.4), let us take \\f = PN[u]^ + 2 a d2uN/dx2](. , t)
in (II. 1) and, for convenience of notation, let us drop for a while the explicit
dependence on x and t. Then

f2TT

(IL7) (?uN/bt) YN[ul + 2 a d2uN/dx2] dx

Ç2 TT

+ (1/2) (a/a*)[w$ + 2 a 82
WA,/8X2] P„[«& + 2 a d ^ / t a 2 ] dx - 0 .

Jo

Since duN/dt is in SN we have from (1.6)

'2 ir

(3uN/dt) *VI>4 + 2 a 32MW/3X2] dx
o r2 i r ,

= duN/dt [uf, +2OL dzuN/dxz] dx
J o

= (3/30|T"(*4/3-a(

On the other hand using again (L6) we dérive
2 TT

(3/3*)[wjv + 2 a d2uN/dx2] PN[^N + 2 <* d2uN/dx2] dx

f2 ir

= (1/2) (3/3x){PN[t4 + 2 a 82wN/8x2]} dx = 0 .
Jo

From (II.7) we get now (II.4).

Remark II. 1 : The estimâtes (II.2) to (IL4) are the discrete analogous of
the conservation laws for the K.d.V. équation defined in, e.g., Miura,
Gardner and Kruskal [16]. They hold for a large class of dispersive
équations.

In the next two lemmas we state some a priori estimâtes for the Fourier-
Galerkin solution in higher order norms.

LEMMA IL2 : Assume that u° belongs to H3
# (0, 2 ir). Then there exists a

constant c => 0 independent of N such that for any t, 0 === t ^ T :

Proof: For any t =s T, we dérive from (II.4)

(II.9) P" (a(duN/bx? - 4/3)(*, 0 dx =
Jo

= | (a(duN/dx)2 - u3
N/3)(x, 0)dx.

vol. 22, ne 3, 1988



506 Y. MADAY, A. QUARTERONI

Using now the continuous imbedding of 1^(0, 2 ir) into L°°(0, 2 TT) (see,
e.g. [12]), we obtain first that

0)dx**(l/3)\\uN(. ,0)||_J|M- ,

By the définition of uN(. , 0) and (1.7) it follows that

(11.10)
1

o
In a similar way, using (II.6), we get

f2\u3
N/3)(x,t)dx^c\\uN(.,t)\\1\\uN(.,t)\\2^c\\uN(.,t)\\i\\u°\\2

o

The estimate (II.8) is then an easy conséquence of (L9), (IL9) and (IL10).

With this stability in the H# (0, 2 ir)-norm we can prove now, as in the
continuous case, the boundedness of another energy intégral.

LEMMA II.3 : Assume that u° belongs to H | (0, 2 TT). Then there exists a
constant c => 0 independent o f N such that for any t, 0 =s t =s T :

(n.ii)

Proof: As in the proof of Lemma II.l we have to choose properly a test
function in (II.l). This time we take

^ = *N[UN + 3 oi(buN/dxf + 6 QLUN d2uN/dx2 + (18/5) a2 d4uN/dx4](. , t) .

This choice yields (hère again we drop the dependence on x and t)

ri ir

(11.12) [(duN/dt) ty + uN(duN/dx) iji 4- a(d3uN/dx3

Let us examine now the first term in (II.12).
Since duN/dt belongs to S^5 by (1.6) we have

f2ir ~ f27T

duN/dt Jji dx = duN/dt(u^ + 3 a(awAr/8x)2 -h
Jo Jo

+ 6 auN d2uN/dx2 + (18/5 ) a2 d
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intégrations by parts yield

(11.13) duN/bt^fdx= (à/dt) [uy4-3auN(duN/dxf +
Jo Jo

+ (9/5)a2(32
Wjv/3;t2)2]dx.

Now we notice that

Jji = YN[u3
N + 3 <x(3wN/3^)2 + 6 au* 82wN/8x2] + (18/5) a2 d4u

hence we obtain

(11.14)

with

Jo

A := (18/5) a3 f W d3uN/bx3 d4uN/dx4dx = 0 ,
Jo

B:= \ UN(dUN/dx)PN(u3
N)dx,

Jo

C .= a [&uN/dx3 u3
N+3uN duN/dx PN(uN d2uN/dx2)] dx ,

Jo

D:=3a MJV duN/dx FN((duN/dx)2 + MN a2aN/ax2) ^x ,
Jo

r2ir

£: := a2 [(18/5 ) uN duN/dx d*uN/dx4 +
Jo

+ 3 d3uN/dx3((duN/dxf + 2uN B2uN/dx2)] dx .

In order to bound B we use the continuous imbedding of H^ (0, 2 TT) into
L°°(0,2ir)

Since H^ (0, 2 TT ) is an algebra, || u^ || =s c || ajy ||3 and therefore we deduce

from (II.8) that

(11.15) \B\*c.

vol. 22, n° 3, 1988
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Let us consider now the term C ; integrating by parts the first addendum we
obtain

f2ir
C = - a [B2uN/dx2(3 u2

N duN/bx) -
Jo

-3uN duN/dx ?N(uN d2uN/dx2)] dx

= 3 a uN duN/èx[PN(uN d2uN/dx2) - (uN d2uN/dx2)] dx ,

Jo

so that

C = 3 a || wN || LQ01| wN || 11| PN (uN b2uN/dx2) - (uN b2uN/dx2) || .

From (1.7) (using again the imbedding of H^ (0, 2 TT) into L°°(0, 2 ir)), we
dérive

and by (II.8) we conclude that

(11.16)

We now have

T2TT

D = 3 a \ uN duN/bx ^M((d/dx)(uN àuN/dx)) dx ,

Jo

Similarly we obtain

= 3 a I PAr(wiV a a N / a^ ) P N ( (8 /8x) (Mjv <>uN/dx)) dx
Jo
f2.r

= 3 a PN(uN duN/bx)(d/dx) PN(uN buN/dx) dx = 0 .
Jo

= a2 P " [ ( _ 18/5)((duN/dxf + wN d2uN/dx2)(
Jo

+ 3(33wN/ax3)((3w^/Ôx)2 + 2 ^ 82w^/8x2)] dx

= -<*2 \ [(3/5)(duN/dx)2 b3uN/dx3 - (6/5) uN d/dx(b2uN/dx2)2] dx
Jo

= a2 f^ [ ( 3 / 5 ) ( Ô / Ô X ) ( ( 3 U N / 3 X ) 2 ) 3 2
M N / 3 X 2 +

Jo
+ (6/5) MiV(3/3x)(32wJV/3x2)2] dx .
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After intégration by parts, we deduce that E = 0.
From (11.14), (11.15), (11.16) and the fact that i = i) = £ = 0 we dérive

[(1/2) du^/dx + a d3uN/dx3] 4/ dx

Due to (IL 12) and (11.13) we obtain

(8/80 f'" [ 4 / 4 - 3 auN(buN/bx)2 +
Jo

After integrating between 0 and t, 0 =s t =s= T and using (II.8) to bound the
two first resulting terms under the intégral, we have

(9/5) a2(82MN(. , t)/dx2)2 dx^ c ( 1 + ||wiV(. , 5)| |2 ^5 }
Jo \ Jo /

where c dépends on the H#(0, 2 7r )-norm of the initial condition u° and on T.
Using now the Gronwall lemma yields (11.11).

We turn now to the convergence estimate for the Galerkin approximation
of the K.d.V. équation.

THEOREM II.l : Assume that u° belongs to H# (0, 2 ir), for some integer
m === 2. Then there exists a constant c>Q independent ofN such that for any t,

(11.17) \\u{.9t)-uN(.,t)\\**cN \-m

Proof: For any time t, 0 ^ t ^ T, we set e(ï) = PN u(t) - MN(f ). From
(LI) and (II.l), setting £[ƒ, g ] = ƒ 8//8x - # 8^/8x we dérive for any \\t in
S/v

(11.18) (be/bt + a 33e/ax3, i|>) = (£[PW M, M] - E[P^ M, U N ] , *) .

Let us choose i|i = e as test fonction in (11.18) and bound each term on the
right-hand side. We obtain first, using (1.2) and (1.7)

(11.19)

vol. 22, n° 3, 1988



510 Y. MADAY, A. QUARTERONI

Moreover, a repeated use of intégration by parts yields

\(E[PNu9uN],e)\ = r(1/2) (3/3x)[(PNu)2-u2
N]edx

(1/2)

(1/4)

\2\PNU
Jo

| * 2 TT

Jo

-h uN)e de/dx dx

From (1.2), (11.11) and the imbedding of H^(0 ,2TT) into
deduce that

(11.20) | (E[PN u, uN], e)\ *

we

u + uN] \\^\\e\

Let us note now that e(0) = 0 ; by (11.18) — (11.20) and the Gronwall
lemma we obtain

i/2

The estimate (11.17) is then an easy conséquence of (1.2), (1.7), and the
triangle inequality :

II «-«AT II ^ ||M-Pjv«|| + Ikll •

The above resuit yields the following error estimate in the
H^(0, 2 7r)-norm.

COROLLARY II. 1 : Assume that u° belongs to H£(0, 2TT)? for some
mzz2. Then there exists a constant c :> 0 independent ofN such that for any t}

(11.21) | M ( . ,t)-uN(.,t)\\l^cN l-m

Proof: This requit is a conséquence of the inverse inequality in (1.8).
Indeed, we have

| M ( . 9t)-PN u ( . , OU ] ,

\\uN{. ,t)-PNu(. 9 t ) \ \ x ^

^ iV[||u(. , 0 ~ uN(. , t

and from (1.7) and (11.17) we dérive

Now (IL 21) follows using again (1.7).
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HL ANALYSIS OF THE COLLOCATION METHOD FOR THE APPROXIMATION OF
THE K.d.V. EQUATION

Despite its mathematical interest, the Fourier-Galerkin method is gener-
ally abandoned in the applications in favor of the Fourier collocation
method. The latter method allows a very efficient treatment of the nonlinear
term u(du/dx) by transform techniques at the expense, however, of
introducing an extra error due to the aliasing. This has induced many
authors to dealiase the Fourier collocation solution by resorting to different
kinds of techniques. For a more involved discussion about these arguments,
the reader is referred to [6] (see e.g. chapter 3 and section 4.4.2).

We will show in this chapter that the aliased Fourier collocation method is
stable and convergent, and that its asymptotic rate of convergence is the
same as that of the Fourier Galerkin method.

III. 1. Position of the problem

Let us introducé the collocation points Ç;- = 2 ir//(iV + 1 ) , for
ƒ = 0, ...,iV. Then we associate with this set the interpolation operator
IN : C°(0, 2 ir) ^ $N defined by :

(IIL1) V / e C ° ( 0 5 2 t r ) , INfeSN and IN ƒ(£,) = f (ij) ,

ƒ = ( > , . . . , # .

Now we define the pseudo-spectral derivative operator dN as

(III.2) V/ECHO^TT), dNf=doINf=d(INf)/dx.

Remark III. 1 : The calculation of the nodal values of dN f in term of those
of ƒ is accomplished by two F.F.T.s plus iV complex multiplications (see,
e.g., [6] chapter 2). This requires 5 N log2 N opérations if AT is a power of 2.

Let us introducé the following « discrete » scalar product in C°(0, 2 TT)2

(IIL3) V<p,*€C0(0,2ir) , (<p, *)„ = ((2ir) /(N + 1)) £ 9 « / ) *(£/)•
/-o

It is well-known that it coincides with the L2-scalar product when the
product <p\|> belongs to S2N, hence in particular

(III.4) V c p ^ e S * , ( 9 , * ) * = O P , * ) .

Then the operator IN is precisely the orthogonal projection operator onto
S# with respect to (. , ,)N. Moreover, it has been proved in [17] that this

vol. 22, n° 3, 1988



512 Y. MADAY, A. QUARTERONI

operator satisfies the following inequality for any real numbers r and s,
0 =s= r === s,

(IIL5) - IN cp||r

With these notations we can now introducé the formulation of the
approximate problem obtained by a coUocation pseudo-spectral method :

Find a mapping uN : [0, T] -• SN such that

(IIL6)
T , V;,
(1/2) 9^ = 0 ,

or, equivalently, since these equalities entail equalities between polynomials
of SN

(IIL7) (1/2) aN
3

? I | I ) N = 0 ,

The proof of the existence of the solution to this scheme and of the
convergence of uN to u will be more technical than the one for the Galerkin
method.

Let us introducé two extended problems that will be useful in the analysis
of (III.6). The first one is a standard K.d.V. problem with initial condition
v° (that wili be equal to w(, , t) for various times t) :

bv/bt + v dv/dx + a d3v/bx3 = 0 , xeM,t >0 ,
v(x + 2TT, Î) = V(X9 r) , ;ceifê,r:>0,

The second problem is a coUocation pseudo-spectral problem whose initial
condition v% e SN is a suitable approximation of v°, which may differ from
IN v° (the one that was considered in (III.7)) :

Find a mapping vN : [0, T] -• SN such that

[bvN/dt + (1/2) dN(v%) + a &vN ) = 0 ,

or equivalently

(III.9)
N , Vf, 0=sf=£7\

Sî + (1/2) dN(v%) + a = 0
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We first exhibit a time interval [0, tf] (ff < T) in which there exists a
solution to the collocation problem (III.9). Then we prove that this solution,
together with its three first derivatives, can be bounded in [0, t*] by some
constants depending only on the initial data. This is accomplished in
Lemma III.2 and in Lemma III.3. We then prove an estimate of the error
between v - vN in terms of v° - v°N. Finally, in section III.4, we show by an
itération argument that the above convergence result, applied to u — uN,
can be in fact extended to cover the whole time interval [0, T],

IIL2. Three lemmas about the boundedness of the solution of the collocation
problem

It is readily seen by the classical theory of differential Systems, that
problem (III.9) admits a local solution. This means that there exists
t0 >• 0, such that for all t ss f0, the solution of (III.9) exists and is unique
(note that r0 may depend on N),

However, no information about the boundedness of the solution in any
norm independently of N is provided from this result. For this we shall take
now well suited test functions in (HL9) as we did in the previous section.

The first choice *|> = 1 in (IIL9) yields

(in. 10) ( a / a o [ p % ( * , O ^ l =0 ,

as in (II.2), or again

(III . l l) V f , O ^ * ^ f o ,
Ç2-n Ç2-H Ç2-n

vN{x,t)dx= vN(x,0)dx= v°N(x)dx,
JQ Jo J0

which expresses the conservation of the Fourier coefficient (vN)0 (0-
We turn now to the proof of

LEMMA III. 1 : For any real number R, there exist three positive constants
to* =s f0, p0, 70 depending only on R such that for any initial value
v°N verifying

(HL 12) KUi^K

and any t, 0 =s= t < £0*, we have

(111.13) K(-,OINPo('o*-0-1/2,
(111.14) K ( . , O||x * 7o(l + (̂ o* - O"5'6) .
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Proof: Let us take t|z = vN in (III.9) ; this gives (we drop again the
dependence on x and t)

(W)(B/bt)(pN, vN)N + 0J2)((B/HX)IN(VN), VN)N +

From property (III.4) the third term vanishes by intégration by parts, thus

(9/3OIKH2 + ((3/ax) IN(v2
N), vN) = 0 .

Using now the Cauchy-Schwarz inequality gives

(9/301|% II2^ \(IN^2
N),dvN/dx)\ *= \\lN(v2

N)\\\\dvN/dx\\

Then by the following Gagliardo-Nirenberg inequality

(111.15) V ç e H ^ O ^ i r ) , | k | | L - « C 1 | | 9 | | 1 î

we have

(111.16) WU)\\vN\\2 ^C^WVHWWVHWJ»2 .

Using now \|i = IN(v% + 2 a d2vN/dx2) in (III.9) yields

(3vN/dt, v% + 2 a 3%/a*2)* + (l/2)(3v(;/3x, -+)w = 0 .

The second term vanishes using (III.4) and intégration by parts, hence

(111.17) (3 /9O[«| |3^/3x | | 2 - ( l /3) (^, 1)N] = 0 .

Let us integrate this equahty between 0 and t, with t ^ 10 and use (III.4) to
get

\\dvN(.,t)/dx\\2- \\3DN{. ,0) /3JC| | 2

= (1/3 *)[(vjf(. , t), 1)N - (vj,(. , 0), 1)N]

^ (1/3 a)QvN{. , t)\\La,\\vN(. , OU2 + K G , 0)||L.| |rw(. , 0)||2) .

Using again inequality (III. 15) gives the following resuit

|| dvN (. , 0 / 3 * ||2 ^ K° + C2( || vN || f || vN ||5/2) ,
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where C2 = (1/3 a ) Cx and

Now a bound for the H ^ O , 2 7r)-norm of vN(. ,t) is easily recovered by
means of (L9). W e deduce

(111.18) II^C^OII^^ ' + ^l l^C^OII^IIM^OII 5 0 ) ,

where K' =2K° + I P * vN(x, 0) dxY ^ 2 R2(l + C2R) + 2 >nR2.

For some technical reasons which will be clarified at the end of our proof,
if necessary we take in (III. 18) a possibly larger K' in order to satisfy the
following inequality

This is achieved for instance for K' = max {R3, 2R2(ir + 1 + CXR)}.
Let us set

C 2 ) C 2 ^ 2 / 3 ) ) and P§ = 1/[(1 + C2) C 2 ] .

We show that (III. 13) holds with these constants.
Assume by contradiction that there exists t* < t$ such that (III. 13) is not

verified for t = r*, i.e.

(111.20) \\vN(. ,t*)\\2>[(l/K')m- (l + C2)C2t*]-1 .

We shall prove now that the derivative of the mapping t -• \\VN{. , t)\\ is
bounded, then we will dérive a lower bound for ||t?^|| which contradicts
(III. 19). First, we note that, for any time t =s tQ such that

(111.21) \\vN(.,t)\\^K'y\

we get

since

I I ^ G . O I I ^ \\VN(- ,011 •

From (III. 18) it follows that for any t satisfying (III.21), we have

(in.22) KG^OII^Ci + ^Kii^o.OllflM^Oir)^
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we deduce then

(111.23) K ( . ,011^ (l + C2f
3\\vN(. ,t)f3

Noting that

we deduce from (111.20) that (111.21) holds for t = t *, hence (111.23) is
satisfied for t — t*. Let us introducé now (III.23) in (III.16). For any t,
O s î « f * such that \\vN{. , t)\\ ^ K'm we have

(a/a*)K(., OU2 « (i + c2) c2\\vN{., 0| |4 ,

which can be written as

(111.24) (a/aO[- V K I I 2 ] =s (1 + c2) c 2 .

Let us consider now the set A c [0, t*] defined by

A = {5, 0 ̂ s =s= r* : for any ̂  in [s, r*] we have \\vN(* , f)|| ^ i^'1/3}

It is an easy matter to check that, by virtue of the continuity of the function
t -> \\vN(. , t)\\, A is a closed subinterval [a*, t*] of [0, t*]. Besides, from
(IIL24) we obtain for any s in A that

I K ( . , 5 ) | | 2 ^ [{i/\\vN(., ?*)||2) + (î + c 2 ) c2(^* - J ) ] - 1 ,

and by (III.20)

(IIL25) VseA, \\vN(. , O| |2 > [(l/K'f3 - (1 + C2) C 2 ^]" 1 > iT20 .

Applying (III.25) to a* shows that a* = 0 hence A turns out to be equal to
[0, t*]. We arrive now to the contradiction between (III.25) with
5 = 0 and (III. 19). We deduce first that the maximal time t0 is independent
of TV since no explosion occurs bef ore f0*, and that (III. 20) cannot hold.
Whence, we have (III. 13) for ail t < r0*. Now (111.14) follows from (III. 13),
(III. 18) and Cauchy-Schwarz inequality.

Remark III.2 : We note that équation (III. 17) is the discrete analog of the
équation (IL 4) of conservation of the third energy intégral for the solution
of the collocation problem. Unfortunately, the conservation of the second
intégral does not hold anymore in the current case. This failure does not
allow us to deduce directly the conservation of the H^ (0, 2ir)-norm of
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vN. On the other hand, this would still be possible if the following skew
symmetrie décomposition of the nonlinear term

( 1 / 3 ) ^ ( 4 ) + (1/3) vNBvN/dx

was considered in (III.9) instead of (1/2) dN(v%)t However, this choice would
slow down the efficiency of the numerical scheme since an extra nonlinear term
should be computed. Besides, we will prove also for the genuine pseudospectral
scheme (III.9) a uniform bound of the H# (0, 2 ir )-norm of vN on the large time
interval [0, T]. To this end, we start by proving a bound on a « small » time
interval in the next corollary.

COROLLARY III. 1 : For any real number R, there exist three positive
constants Il9 p l5 yl depending only on R such that for any initial value
v% verifying

(IIL26)

and any t> 0 ^ t «s F l9 we have

(HI.27) K G . O H Pi»

(111.28) H M - , OII ̂ 7 1 .

Proof: It is a simple conséquence of the previous lemma. For instance
one can take t1 = ro*/2, in which case (111.27) and (IIL28) hold with
Pi = ^o[2Aoc]1/2 and 7x = 7o(l + (t$/2y5f6).

The same kind of bounds we obtained for vN will now be proved for the
derivative BvN/dt. Let us first recall that in view of (111.10) the following
equality holds

f2 ir
(111.29) Vt, 0 «s t ^ r0 » dvN/dt(x9t)dx =

J

f2 ir

JQ

Further information concerning the boundedness of the norms of in
dt

L2(0, 2 TT) and H^ (0, 2 TT) are obtained by differentiating équation (III.9)
with respect to the time variable. We get

(111.30) V* e SN, Vt, 0 ss t ̂  T , (B2vN/dt2 + dN(vN dvN/dt)

+ a(ô3/ax3)(8«?w/3O, * ) N = 0 .

We can now prove the following result.
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LEMMA III.2 : For any real number R, there exist three positive constants
t\ ** ?i> Pi* anc* 7*> depending only on R, such that for any initial value
v% verifying

and any t, 0 =s t < t f, we have

(111.32) ||(3i

(111.33) II (»»*/*)(•, O

Proof: Let us take «|» = dvN/dt in (111.30). We obtain, using (III.4) and
noting that dvN/dt is periodic

Vf, 0=s t ^ ?j , ( l /2)(9/aO| |9^/9r | |2 + (aw("N 9%/9O, 3»N/8OW = 0 •

By the définition (III.2) and the property (III.4), integrating by parts and
using the Cauchy-Schwarz inequality, it follows

(d/dt)\\dvN/dt\\2 *s2\(IN(vN dvN/dt),

Using the Gagliardo-Nirenberg inequality (III. 15) and Corollary III. 1, we
can find a constant K" depending only on the H^ (0, 2 Tr)-norm of the initial
data such that

(IIL34) \/t,O*t* ?! , |K||Loo ^ K" .

We can therefore obtain the inequality

(IIL35) Vf, 0 ̂  t ^ t ! , (a/ar ) || *vN/bt \\2^2 K» II dvN/dt II II a ^ / a r || x.

Our goal is now to provide a bound for || dvN/bt \\ 1. To this end, let us take

4, = IN(vN dvN/dt + a(d2/dx2) dvN/Bt)

as test function in (III.30). This choice yields the equality

- (b2vN/bt2, a(d2/dx2) bvN/bt) = (d2vN/dt2, vN bvN/dt)N .
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A f t e r i n t é g r a t i o n b e t w e e n 0 a n d t, 0 =s= t ^ tl9 w e o b t a i n

\2(111.36) | | (3/ax)(3^/3f)(. , 0 | | 2 - U*/*x)(BvN/dt)(. ,0)\\

(d2vN/dt2, vN dvN/dt)N ds .

Let us now focus on the right-hand side of the previous equality. Integrating
by parts with respect to the time variable gives

I (dvN/dt,

f (d2vN/dt2, vN dvN/dt)N ds = [(dvN/bt, vN dvN/dt)NY0
Jo

Bt)(vN bvN/dt))N ds

Y0 - (dvN/dt,(dvN/dt)2)Nds
Jo

- \ (bvN/dt, vN d2vN/dt2)N ds .
Jo

Noting that the last term on the righ-hand side is the opposite of the left-
hand term, we get

2 f (d2vN/dt\ vN dvN/dt)N ds = ((dvN/dtf (. , 0 , M - » 0)N ~
Jo

/dr)2 (. ,0),^(.

, (dvN/dtf)Nds.o

By virtue of (III.34) and the Gagliardo-Nirenberg inequality (III. 15), we
deduce that

(&vN/to2
9vN dvN/dt)N ds

, ' \\avN/bt\\Ln \\*vN/dt\\2ds,
L Jo

t

Jo
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Injecting this inequality in (III.36) and using (L9) and (III.29) gives

(a/2)H (dvN/dt)(. , t)\\\ « a|| (dvN/ôt)(. , 0)\\\

+ HdvN/Bt)(.,0)\\2\\v%\]

+ K"\\(dvN/dt)(.,t)\\2.

We can rewrite (III.9) as follows

dvN/bt = (1/2) bN(v%) + a d3vN/dx3 .

Then using (III.31), it is an easy matter to deduce from this equality that

c

and using (III.5) with r = s = 1, we deduce that || (bvN/bt)(. , 0)|| is
bounded by R2(l + ai? ). On the other hand, by taking the derivative in the
x-direction of the previous equality, we dérive that the term
\\(àvN/dt)(. ,0)\\x can be bounded by R2(l +OLR). FinaUy, with a new

constant K" depending only on R, we obtain the inequality

(111.37) W, 0 ̂  t ^ tl ,

K"{\ + || (ai?N/a0(., Of)

Let us now consider the set B defined by

B= [0,s]:Cl J ' Ha^/^H1 /2 ||apN

It is an easy matter to check that B is not empty ; indeed, we dérive from
(1.8) and (III.35) that

VT, 0 ̂  T ̂  t1 ,
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Then, we get, using again (1.8)

VT, 0 ^ T ̂  P ,

\\*>N/*t(- >*)\\2 + CN-1 \\BvN/dt (. , T ) | | 2 ^

===2 \\dvN/dt (. , 0) | |2exp(2ciV£"T).

This proves the existence of a time tt :> 0 (obviously depending on N) such
that ]0, f ( ] c 5 . Next, we dérive from (IIL37) that

(IIL38) VteB, \\ (bvN/bt)(. , f )||2 «£ K"(2 + || ( 3 ^ / * ) (. , f )||2) ,

and due to (111.35)

VteB, (d/dt)\\dvN/dt\\2 ^ Ktf VK7r(2\\àvN/dt\\ + | |B^/3r| |2)

After intégration on time, we obtain

(2 + || (3«WW)(. . 0)||2) exp(4 K" v ^ 0 .

(111.39) W e 2?, (2+ || {*vN/dt)(. , 0 | |2)

From (III.38) we then state

(111.40) W 6 5 , | | ( a | i ;
2 ) e x P ( 4 r

We deduce that there exists a constant TOJ that dépends only on the
H^ (0, 2 -rr)-norm of the initial function v% and on T such that

From the définition of 2? we can state that this set contains an interval
[0, ff] with ff = min (tu K"/(CX TQ/2)), which is therefore independent of
N. Thus the desired results follow from (111.39) and (IIL40).

In order to prove the convergence of the discretization we need a further
stability result

LEMMA III.3 : For any real number R, there exists a constant y3 depending
only on R such that for any initial value v°N verifying

Kil 4^*
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and any t, 0 =s t =s= tf, we have

(111.42) || ̂ ( . ,0113 «73-

Proof: Let us choose i|> = d3vN/dx3 in the équation (III.9). We obtain

[\\d/dx((v2
N)-IN(v2

N))\\

Using (III.5) with r = s = 1 we have

(111.43) |«11|33i>N/a*3 | |2 * II

On the other hand, using the définition of H | (0, 2 Tr)-norm, the inequality
(III.15) and the inverse inequality (1.8) we deduce

By virtue of (III.43) we obtain

The two previous lemmas yield now that the term | |ö3%/9 jc3 | | is bounded
and we dérive the desired resuit (TTT.42) by noting that

111,3. Analysis of the convergence in the local interval [0, t f ]

We are now in the position of stating a first local convergence resuit of the
solution of the collocation problem (III.9) to the one of the K.d.V. équation
(III.8) in the time interval [0, ?*]. Precisely we have :

PROPOSITION III. 1 : Assume that v° belongs to H^(0, 2TT), for some
m 5= 4, and that v°N is bounded in H^(0, 2 ir) independently ofN. Then there
exists a constant Am > 0, depending continuously on ||i?^ || but independent

of N, such that for any t, 0 =s t === ff :

(111.44) ||»„(. ,t)-v(.,t)\\1*Am N2~m+ \\v% - v0^ .
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Proof: From (III.8) it is easy to check that (remind that E(x) dénotes the
intégral part of x)

( / ) 3 i ? / 3 r + V dv/dx + ot d3v/dx3) = 0 .

so that

Vi|/ e L2(0, 2 ir) , W, 0 ̂  f ̂  r ,

3 3 ) , i|#) = 0 .

For a fixed time ?, let us substract this équation from the collocation
équation (III.9) at the same time. If we set v (t) = YE{N/i) V ( 0 a n c i

e(t) = v(t) - vN(t), for any i|; in SN we dérive the identity

(111.45) (Be/bt + a d3e/dx3, I|I) =

Taking ty = e(t) for all t and noting that £2(*) e SN we obtain

(111.46) (B/aO||e||2= (d/dx(v2-v2),e)

(i;2 - rElN/2)(v
2)), e) + ( a / a x ^ K - v2)), e).

The last term on the right can be bounded as follows

(9/dxVM - V2)), e) = «v% - ü2), de/Bx)N

= «2v-e)e,de/dx)N

e, Ï5e)^2 \\&e/dx\\ + | |3«/ax | | L . | |e | |2

Then from (III.46), we deduce

(111.47)

+ 2||B||L.

From (1.2) and (1.7) we get, as soon as i>° belongs to Hm(0, 2 ir) with

(ra.48)[||3D/a*||L.+
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Hère C (m) is a constant that dépends only on the norm Un II ̂ 11 •
Moreover, from (III.42) we have (we enlarge, if needed, the value of
C(m) keeping although its dependence only on -nm||t;0|| )

(IIL49) 2||2||LOO+ \\Be/Bx\\VD^C(m) + yz.

Taking into account (III.47), (111.48) and (III.49) we obtain

(111.50)

where the constant dépends on the initial data only.
Our next goal is to obtain an estimate for || de/dx || to be used in (III.50).

For this, we take 4/ = (IN v% - ?E(N/2) V2)-2OL d2e/dx2 in (III.45), so that
we find the identity

- 2 a(de/dt, d2e/dx2) = (Be/Bt, PE{N/2) v2 - IN v2
N) .

Therefore

(IIL51) a(d/dt)\\de/dx\\2

= (de/dt, TE{N/2} v
2 - v2) + (3e/ar5 IN(v2 - v2

N)) ,

or again, if we set w = PE(N/2) v2 - v2,

(111.52) a(3/8O||3e/Bx|i2= (de/Bt,w) + (de/Bt, IN[e(V + vN)]) .

Besides we remark that

(de/dt, IN[e(v + vN)]) = (de/dt, e(v + vN))N - (l/2)(3^2/9^ » + VN)N •

Then integrating (III.52) between 0 and t for any t =s tf we dérive

(111.53) a || (36/te)(. , OU2 -et» (3e/to)(. , 0)| |2

= (be/Bt,w)ds+ (1/2) (de2/dt,v+vN)Nds.
Jo Jo

Setting z — v + vN and integrating by parts with respect to t gives

(HL54) I f (de2/dt, z)N ds
o

- [(e , z)Nft + f' (e2,

\{e\. ,t),z(. ,t))N\ + \{e\ , 0 ) , z ( . ,

max
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Furthermore, we have

(IIL55)

I f' f'
(de/dt,w)ds = - (e(0, w(0)+ (e(0), w(0)) + (e, aw/ôf)

I Jo Jo
=s II e (OH ||w(OII + lk(0)|| ||w(0)|| +t max ||e(T)||1||8w/ar(T)

Finally, we can deal in a similar way the last term of the right-hand side of
(111.53).

Let us set now

|(e2(0),z(0))N | + |

then, from (111.53) to (111.55) we deduce that

Vf, 0 « *«=*!*,

\\LX] f' ||max

+ M O I I 2 + I | H > ( O I I 2 .

It is readily seen from (1.2) and (IIL8) that if v° belongs to H^(0, 2 ir) with
m 2*3, then v belongs to L°°(0, T ; HJ(O? 2 ir)) and dv/dt belongs to
L°°(03 T ; H^~3(0, 2 ir)). Thus, by a straightforward application of (1.7),
we deduce

Ko + C max [Wdw/dt^f^ + | |W(T) | | 2 ] ^ C(
0 ̂  T ̂  / f

Hence we dérive from (III.28) and (III.33) that

(111.56) max || 8e/3jc(x) ||2 ̂
t

ƒ'ƒ
Let us now introducé this last inequality into (III.50) ; we obtain

ƒ'
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whence, after intégration with respect to the time variable

Vt,O*t*tf, \\e(t)\\2

( j ' \e(s)\\2

\\e(s)\\

The Gronwall lemma yields now

(IIL57) Vt,O*t^t?, |

We recall that the constant (C (m) + 73) that appears hère dépends only on
the Hm(0, 2 7r)-norm of the initial value i?° and on 73, which in turn, from
Lemma III.3, provides a bound for the H3(0, 2 Tr)-norm of vN. Hence c is a
constant independent of N and t,

The resuit (III.44) follows now using (1.7) oncemore, together with
(III.56) and (III.57).

HI.4. Convergence results for the approximation

We can state now the main resuit of this section.

THEOREM III. 1 : Assume that u° belongs to Hm(0, 2TT), for some
m :> 4. Then for any t, 0 =s t ^ T and any N large enough the following
estimate kolds

(111.58) j2~m

Proof: Let us choose a class of initial conditions for (III.9) such that

(IIL59) K | | 4 ^ 0

where T)4 is the constant which appears in (1.2). From Lemma III.2 (applied
with R = 2 nri41| M0 || 4), we deduce the existence of a time t * independent of N
such that, for any initial condition verifying (III.59), the solution of (III.9)
exists for any t, 0 =££=== f*. Under the current hypotheses, by virtue of
Proposition III. 1 there exists a constant Am = A(\\u°\\m) such that, for any

time r, 0 =s= t =e t*, we have

(111.60) HM- ,t)-v(.,t)\\ï^AmN2-m+ K - P V
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Finally, we dénote by N* the intégral part of

where we have set K = T/t*.
From (III.5), it can be deduced that there exists a constant N1~* N* such

that for any N ^ Nx the estimate (IIL59) is true if we take v°N = u%, and that

(111.61) | | „ ° - M 0 | | i + \\u{.9t)-PNu(.9t)\\x +

+ 7V"3||w(. ,t)-PN u{. , 0 | | 4 ^ A m ^ 1 " m

(if needed, we have enlarged the value of the constant Am).
We are going to prove by induction on k ^ K that

For any t : kt* ^t === (k + l)t*,uN exists and satisfies

id

«( . ,t)-uN(. , 0 | | i

It is an easy matter to check that (Ho) is a simple conséquence of (III.60)
and (III.61). Let us assume that Hk is true for k and let us prove it for
k + \. It is readily seen that the solution of (III. 8) with
v° = M(. , (k + 1 ) t*) is the solution of (1.1) and that the solution of (III.9)
with v% = uN(. , (k + 1) t*) is the solution of (III.7) for t ^ (k + 1) t*.
First, we have to prove a bound for \\uN(. , (k + 1) f *)| |4 . Using (1.7) and
the inverse inequality (1.8) we deduce from (III.61) and the previous
estimate that

W , 0 = s f « (k + l ) t * , \\uN(.,t)-VNu(.,t)\\A

3 ( . ,t)-PNu(. , 0 1 ^

Therefore

\\UN(. ,t)-PN M(. , 0 | | 4 + | |M( . , 0 - P N ( - , 0 | | 4 + l l « ( - »

If N is chosen greater than iV* we dérive from (1.2) that
\\uN(. ,(&+ 1) t*)\\4 ^ 2TI 4 | |M° | | 4 . Moreover, from Lemma III .1, we de-
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d u c e t h a t u N e x i s t s f o r a n y t, (k + l ) t * = s t =s (k + 2 ) t * a n d f r o m ( I I I . 6 0 )

W,0=sf =sf* ,

\\uN(. , (* + l ) t * + t ) - « ( . , ( * + 1 ) ^ + 0 1 1 ^ Am N2-m +

+ | | « J V ( . , ( f c + l ) ï * ) - u ( . , ( * + l ) ï * ) | | 1 .

Using now the induction hypothesis we obtain

This proves (Hk + l). Thus the induction procedure applies successfully and
the desired resuit (III.58) follows.

Remark III.3 : The stability resuit in the H4(0, 2 ir)-norm stated in
(Hk) plays a fundamental rôle in the proof of the global convergence resuit
(III.58). As we have seen, stability has been obtained by exploiting the
spectral decay of the error on each local interval [kt*, (k + 1)**].
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