Asymptotic behaviour of an elastic body with a surface having small stuck regions
ESAIM: Modélisation mathématique et analyse numérique, Tome 22 (1988) no. 4, pp. 609-624.
@article{M2AN_1988__22_4_609_0,
     author = {Lobo, Miguel and Perez, Eugenia},
     title = {Asymptotic behaviour of an elastic body with a surface having small stuck regions},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {609--624},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {22},
     number = {4},
     year = {1988},
     mrnumber = {974290},
     zbl = {0659.73006},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1988__22_4_609_0/}
}
TY  - JOUR
AU  - Lobo, Miguel
AU  - Perez, Eugenia
TI  - Asymptotic behaviour of an elastic body with a surface having small stuck regions
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1988
SP  - 609
EP  - 624
VL  - 22
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1988__22_4_609_0/
LA  - en
ID  - M2AN_1988__22_4_609_0
ER  - 
%0 Journal Article
%A Lobo, Miguel
%A Perez, Eugenia
%T Asymptotic behaviour of an elastic body with a surface having small stuck regions
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1988
%P 609-624
%V 22
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1988__22_4_609_0/
%G en
%F M2AN_1988__22_4_609_0
Lobo, Miguel; Perez, Eugenia. Asymptotic behaviour of an elastic body with a surface having small stuck regions. ESAIM: Modélisation mathématique et analyse numérique, Tome 22 (1988) no. 4, pp. 609-624. http://archive.numdam.org/item/M2AN_1988__22_4_609_0/

[1] H. Attouch, Variational convergence for functions and operators, Pitman. London (1984). | MR | Zbl

[2] A. Brillard, M. Lobo, E. Perez, Homogénéisation de frontières par épi-convergence en élasticité linéaire. (A paraître). | Numdam | Zbl

[3] D. Cioranescu, F. Murat, Un terme étrange venu d'ailleurs. Collège de France Seminar, Research Notes in Mathematics, Pitman, London, (1982)n° 60, p. 98-138, n° 70, pp. 154-178. | Zbl

[4] J. Deny, Sur la convergence de certaines intégrales de la théorie du potentiel. Arch. Math. Vol. V, (1954), p. 367-371. | MR | Zbl

[5] G. Duvaut, J. L. Lions, Les inéquations en mécanique et en physique. Dunod. Paris (1972). | MR | Zbl

[6] W. Eckhaus, Asymptotic Analysis and Singular Pertubations, North-Hoïland, Amsterdam (1979). | MR | Zbl

[7] O. A. Ladyzhenskay, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach. London (1969). | MR | Zbl

[8] L. Landau, E. Lifchitz, Théorie de l'Elasticité. Mir. Moscou (1967). | Zbl

[9] J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. Vol. I. Dunod, Paris (1968). | Zbl

[10] M. Lobo, E. Perez, Comportement asymptotique d'un corps élastique dont une surface présente de petites zones de collage. C.R. Acad. Se. Paris, t. 304, Série II n° 5, 1987. | MR | Zbl

[11] R.C. Mac Camy, E. Stephan, Solution Procedures for Three-Dimensional Eddy Current Problems. J. Math. Anal. Appl. 101 (1984), 348-379. | MR | Zbl

[12] F. Murat, Neumann's Sieve. Proceedings of the meeting on variational methods in nonlinear analysis, Isle of Elba 1983. Research Notes in Mathematics,° 127 Pitman, London, 1985. | MR | Zbl

[13] C. Picard, Analyse limite d'équations variationnelles dans un domaine contenant une grille. Thèse d'Etat. Université de Paris-Sud. Orsay (1984).

[14] E. Sanchez-Palencia, Boundary value problems in domains containing Perforated walls. In Nonlinear Differential Equations, Collège de France Seminar, Vol. III, Research Notes in Mathematics, 70, p. 309-325, Pitman, London (1982). | MR | Zbl

[15] J. Sanchez-Hubert, E. Sanchez-Palencia, Acoustic fiuid flow through holes and permeability of perforated walls. Jour. Math. Anal. Appl., 87, (1982) p. 427-453. | MR | Zbl

[16] I.N. Sneddon, Fourier transforms, McGraw-Hill. London (1951). | MR | Zbl

[17] R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars. Paris (1983). | MR | Zbl