@article{M2AN_1989__23_1_129_0, author = {Geveci, Tunc and Reddy, B. Daya and Pearce, Howard T.}, title = {On the approximation of the spectrum of the {Stokes} operator}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, pages = {129--136}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {23}, number = {1}, year = {1989}, zbl = {0683.65095}, mrnumber = {1015922}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1989__23_1_129_0/} }
TY - JOUR AU - Geveci, Tunc AU - Reddy, B. Daya AU - Pearce, Howard T. TI - On the approximation of the spectrum of the Stokes operator JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique PY - 1989 DA - 1989/// SP - 129 EP - 136 VL - 23 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1989__23_1_129_0/ UR - https://zbmath.org/?q=an%3A0683.65095 UR - https://www.ams.org/mathscinet-getitem?mr=1015922 LA - en ID - M2AN_1989__23_1_129_0 ER -
Geveci, Tunc; Reddy, B. Daya; Pearce, Howard T. On the approximation of the spectrum of the Stokes operator. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) no. 1, pp. 129-136. http://archive.numdam.org/item/M2AN_1989__23_1_129_0/
[1] Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, Englewood Cliffs, N.J.
,[2] Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236. | Numdam | MR 509973 | Zbl 0428.65059
,[3] Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal. Num. 12 (1978), 25-50. | Numdam | MR 488712 | Zbl 0434.65032
,[4] A hybrid finite element to compute the free vibration frequencies of a clamped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118. | Numdam | MR 618818 | Zbl 0462.73049
,[5] Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin. | MR 548867 | Zbl 0413.65081
and ,[6] Finite elements for incompressible flow, Math. Meth. in the Appl. Sci. 1 (1979), 16-31. | MR 548403 | Zbl 0425.65061
,[7] An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346. | MR 633811 | Zbl 0469.76026
,[8] Eigenvalue approximation of mixed and hybrid methods, Math. Compt. 36 (1981), 427-453. | MR 606505 | Zbl 0472.65080
, , and ,[9] Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-239. | MR 677872 | Zbl 0478.76041
, and ,[10] An application of mixed finite element methods to the stability of the incompressible Navier-Stokes equations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634. | MR 725657 | Zbl 0526.76039
,[11] An Analysis of the Finite Element Method, Prentice-Hall, 1973, Englewood Cliffs, N.J. | MR 443377 | Zbl 0356.65096
and ,[12] Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford. | Zbl 0426.35003
,[13] Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia. | MR 764933 | Zbl 0833.35110
,[14] Implementation of the Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin. | MR 720192 | Zbl 0475.76036
,