Time-discretization and inertial manifolds
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 3, p. 395-404
@article{M2AN_1989__23_3_395_0,
     author = {Demengel, F. and Ghidaglia, Jean-Michel},
     title = {Time-discretization and inertial manifolds},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {3},
     year = {1989},
     pages = {395-404},
     zbl = {0682.65076},
     mrnumber = {1014481},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_3_395_0}
}
Demengel, F.; Ghidaglia, J. M. Time-discretization and inertial manifolds. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 3, pp. 395-404. http://www.numdam.org/item/M2AN_1989__23_3_395_0/

[1] F. Demengel and J. M. Ghidaglia, Inertial manifolds for partial differential evolution equations under time-discretization : existence, convergence and applications, Preprint, Orsay, 1988 ; see also C.R. Acad. Sci. Paris, t. 307, Série I, 1988. | MR 964105 | Zbl 0726.35056

[2] F. Demengel and J. M. Ghidaglia, Construction of inertial manifolds via the Lyapunov-Perron method, Compte rendu du Groupe de travail sur les variétés inertielles, Orsay, to appear.

[3] C. Foias, G. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73 (1988) 309-353. | MR 943945 | Zbl 0643.58004

[4] M. Luskin and G. R. Sell, Approximation théories for inertial manifolds, M2AN, vol. 23 (1983) n° 3, 445-461. | Numdam | MR 1014485 | Zbl 0688.58035

[5] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physies, Springer, New-York, 1988. | MR 953967 | Zbl 0662.35001

[6] J. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs n° 25, A M.S., Providence, 1988. | MR 941371 | Zbl 0642.58013