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MATHEMATICALMODELUNGANDNUMERICALANALYSIS
M0DÉUSAT1ON MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 23, n°3, 1989, p 463-488)

APPROXIMATE INERTIAL MANIFOLDS
FOR THE PATTERN FORMATION CAHN-HILLIARD EQUATION

by Martine MARION Q)

Abstract — An approximate inertial manifold for an évolution équation is a finite
dimensional smooth manifold such that the orbits enter, after a transient time, a very thin
neighbourhood of the manifold In this paper, we consider the Cahn-Hilliard équation and we
present a method which allows to construct several approximate inertial manifolds providing
better and better order approximations to the orbits. These approximate inertial manifolds exist,
whether an exact inertial manifold is known to exist or not

INTRODUCTION

The purpose of this article is to study some questions related to the large
time behavior of the solutions of the Cahn-Hilliard équation. This équation
is a model for pattern formation in phase transition and describes the so-
called spinodal décomposition in binary alloys [1, 2, 6, 12]. The équation,
which contains a fourth order dissipative term and a second order anti-
dissipative term, reads

— + A2w + aAw-&A(w3) = 0 , a,b>0. (0.1)
ot

Problem (0.1) has been studied by several authors [12, 10, 11, 3]. In
particular, in space dimension n === 3, (0.1) possesses a global attractor [11].
Also, in the case where the spatial domain is a cube of Stn

y n = 1, 2, the
existence of inertial manifolds has been derived [3, 11] ; we recall that an
inertial manifold [5] is a finite dimensional Lipschitz invariant manifold
which attracts exponentially all the orbits as time goes to infinity. We will
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464 M MARION

consider hère Problem (0.1) posed on arbitrary bounded subsets of
Mn, n s* 3, and our aim is to show the existence of approximate inertial
manifolds.

The concept of approximate inertial manifolds [4] constitutes a substitute
to that of inertial manifold when either an inertial manifold does not exist or
its existence is not know. These manifolds are finite dimensional smooth
manifolds such that all the orbits enter after a transient time a very thin
neighbourhood of the manifold. The existence of approximate inertial
manifolds has been proved for the two-dimensional Navier-Stokes équations
[4, 13] and also for reaction-diffusion équations in high space dimension [8]
(for the latest équations non existence results of inertial manifolds are
known when n = 4 [7]). Let us also mention that the concept of approximate
inertial manifolds leads to new numerical schemes, well adapted to the long
term intégration of évolution équations [9].

We will construct several manifolds providing better and better order
approximations to the orbits. We investigate a slightly more gênerai
équation than (0,1) which can be rewritten in the abstract form

where A = - A associated to the appropriate boundary condition
(Neumann or periodic) and ƒ is a polynomial of odd degree with positive
leading coefficient. The équation and its functional setting are described in
Section 1. We consider, in Section 2» the orthonormal basis of L2(Ci)
consisting of the eigenvectors of A

Aw} = X; Wj , ; = 1 , 2 , . . .

0 =s kx =£ k2, • . . , Kj - • + oo as ƒ -> -f oo .

For fixed m, we consider the orthogonal projector Pm in L2(O) onto the
space spanned by wx, ..., wm and we introducé the corresponding projections
of u

pm^Pmu, qm= (I -Pm)u.

We show that, after a transient period, pm is comparable to u in norm, and
qm is small in comparison with pm and u, This is the first step in the
construction of approximate inertial manifolds, since these manifolds are
closely related to convenient approximations of the different terms in the
équation for qm, taking into account the « smallness » of qm :

^ + A2qm+(I-Pm)Af(pm + qm) = 0. (0.2)
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PATTERN FORMATION CAHN-HILLIARD EQUATION 465

For example, the simplest approximation will be given by

A2qm+(I-Pa)Af(pm) = 0 (0.3)

and the corresponding manifold Jt\ has the équation

where, for any given pm, <&i(pm) dénotes the solution of (0.3). The
Sections 3 to 5 contain the main results. We prove the existence of six
manifolds Jin 1 ̂  / =s= 6, of dimension m such that the orbits enter, after a
transient time, a neighbourhood of Jtx of thickness (^Am + i)' +2* These
manifolds are analytic and explicitly defined. Of course, in each case, by
choosing m sufficiently large, we can make the neighbourhood of
Jtx arbitrarily thin (i.e. \m + x/\2 sufficiently large). The manifolds
Jit are defined one after another thanks to improved approximations of
(0.2). We believe that the method we present here leads to the construction
of a whole family Jtx providing better and better order approximations of
the orbits (of the order of (^Am +1 )' + 2) anc* w e intend in a separate paper
to give the construction of the whole family.

CONTENTS

1. The équation.

2. Fast decay of small structures,

3. The approximate manifolds Jix and Jï^

4. The approximate manifolds Jt^ and Jï^

5. The approximate manifolds Jis and Jt&

1. THE EQUATION

Let Q, dénote an open bounded set of âtn
9 n = 1, 2 or 3, with a smooth

boundary T. We consider the following équation involving a scalar function
u = u(x,t), x e fl, t =*0

^ - A X ( u ) = 0 , in Ü x l + J (1.1)
ot

Here, ƒ is a polynomial of degree (2p — 1 ) with positive leading coefficient

/ ( « ) = 2 £ l f l X ' «2,-1 > 0 , (1.2)
/ = i
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466 M. MARION

and we assume that

p^l if n = l , 2 and p = 2 if w = 3 . (1.3)

For p = 2, one recovers the usual Cahn-Hilliard équation (ƒ (u) = ~ ÛW +
6M3

? a ? d>-0 , see [1, 2]).
This équation is supplemented with the initial condition

u(x,O) = uo(x) inft, (1.4)

and with boundary conditions which can be of either Neumann or periodic
type

O = Yl ]0, L, [ , Lt > 0 , and w is Û-periodic . (1.5)2

Note that (1.5)l is also equivalent to

du dàu
dv du

= 0 on T .

For the mathematical setting of the problem, we introducé H = L 2 (û )
(equipped with its usual scalar product (• , .) and norm j . | ) . Let
A dénote the linear unbounded positive self-adjoint operator on H given by

Au = — Au,

D(A) = {u E H2(O), the considered boundary condition holds } .

Then, (1.1) (1.4) (1.5) is equivalent to the abstract évolution équation

^ + A2u+Af(u)=:0, (1.6)

u(0)~u0. (1.7)

As shown in [10], for w0 given in H> the initial value problem (1.6) (1.7)
possesses a unique solution u defined for all i s* 0, such that

ue ^(m+ ;H)D L2(0, r ; D(A)) n L2^(0, T ;

Furthermore, if u0 e D(A) n L2i?(O)?

ue<ë(M+ ; D(A) H L2p(n)) D L2(Q, T ; D(A2)) ,

Now? let us recall briefly sortie of the results in [10, 11] concerning the
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PATTERN FORMATION CAHN-HILUARD EQUATION 467

long time behaviour of the solutions of (1.6) (1.7). It is easy to see that the
average of u is conserved

17Ü I u(x>Odx=U0 = - ± T I uo(x)dx, V r ^ O , (1.8)
\il\ Ja \il\ Jn

so that there exists no absorbing set in H for the semi-group S(t) defined by
(1.6) (1.7). This difficulty is circumvented by making the senü-group
operate in the set

Ha= {ueH, \ü\ ^ a } ,

where a ^ 0 is fixed. It can be shown that the semi-group S(t) possesses
absorbing sets in Ha and Ha n i ï ^ f l ) and a global attractor sir

a in
Ha. The regularity and the dimension of the attractor are also studied in [11]
to which the reader is referred. We will only recall hère a time uniform
estimate which will be used later. Let u0 be given in a bail B(0,R) of
Ha of center 0 and of radius R. Then there exists a time t0 depending only on
(H, ƒ ), on a and on R such that

I M I ^ ( n ) ^ K o , V r ^ ; 0 , (1.9)
where K0 dénotes a constant depending only on (H, ƒ ) and a. Alternatively,
(1.9) expresses that the bail of center 0 and of radius K0 is an absorbing set in
Ha n H2{Ci) for the semi-group S(t).

We conclude this section by stating some time uniform estimâtes on the
time derivatives of u. We set

(t\ d}u . ir

dt*

PROPOSITION 1.1 : Assume (1.2) (1.3) hold. Then the solution u of (1.6)
(1.7) satisfies

where K}, j G Jf, depend on (Cl, f, a) ; tp j G Jf', depend on (H, ƒ, a ) and
on R when |uo| ^ R*

The proof of this Proposition is given in Appendix A.

2. FAST DECAY OF SMALL STRUCTURES

We dénote by {w}} the basis of H consisting of the eigenvectors of
A

AWj = \JWJ , j = 1, ...

0 = kl <; \ 2 === X-3 ... ; X} - • + oo as ƒ -> + oo .
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We have Ker A = M and the corresponding projection is

u -• u , ü given by (1 8) (2 1)

Let m dénote a fixed integer To such an m, we associate the orthogonal
projector P = P m m H onto the space spanned by the first m eigenvectors of
A, wu , wm (note that Px is given by (2 1)) We set also Q = Qm =
I — Pm and we have an orthogonal décomposition of H

H=PmH@QmH

For the sake of simphcity, we set

and we introducé

ô = *2Am + l

We associate to any orbit M of (1 6) (1 7) in H îts projections

p = p w , q = Qu

Hère /? represents a superposition of « large structures » of size larger than
\~ m and q represents « small structures » of size smaller than X~ ^

We now project (1 6) on PH and QH Since F , Q commute with
A and A2, we obtain a coupled System for p, q

+ Ap + PAf(p + q) = 0, (22)

C^+A2q + QAf{p + q) = Q (2 3)

Hereafter, we dénote by K any constant which dépends only on
(fl, ƒ ) and a Our goal in this section is to prove that q remains small for
large t We will give two results the first one concerns q îtself, and the
second one deals with lts time denvatives

We first dérive the

PROPOSITION 2 1 Assume that (1 2) (1 3) hold and let ube a solution of
(1 6) (1 7) lying in Ha Then, for t sufficiently large, t^tç, the small
structures component of u, q ^ Qu, is small in the following sensé

\q\*z KÔ2, \Aq\*Kb, (2 4)

where t$ dépends on (£1, f,<*) and on R when |wo| =s R

M2AN Modélisation mathématique et Analyse numérique
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Proof: Taking the scalar product of (2.3) with A2q, we obtain

i £ \Aq\2 + \A2q\2 = - (Af(p + q),A2q) ,

^ \Af(p+q)\\A2q\ .

Since H2{£1) is a multiplicative algebra for n =s 3, we infer from (1.2) that

, (2.5)
2 \

where cx dénotes a constant depending only on H. Combining this inequality
with (1.9), we have, for t sufficiently large, t =2= t0,

Hence, coming back to (2.5),

Due to the définition of Q, we have

\A2v\ ^ A\Av\, \Av\zzA\v\, Vu eQD(A2) . (2.7)

Therefore, (2.6) gives

and by intégration

Hence, using (1.9)

K2

0 l 2 ^ Knexp(- A2(r - t0)) + —!-
A2

2 K ? /
^ —— , Vr ^ max ( 2 ^Ko \r0,r0 + - l o g _ j .

vol. 23, n°3, 1989
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Recalling that A-Km + l and setting

tg = max max ( t0, t0 +

we have

r ^ —Y

which implies thanks to (2.7)

/ 2 , \ n + l M

This shows (2.4) and concludes the proof of Proposition 2.1.

We now show that the time derivatives of q become also small for large
t, with the same order of magnitude as q. We set

*0) = T 7 Z * 1

PROPOSITION 2.2 : The assumptions are (1.2) (L3) and we let j === 1. Let u
be a solution o f (1.6) (1.7) lying in Ha. Then, for t sufficiently large,
t ^tf

r q = Ou is such that

(2.8)

where tj dépends on j , on (H, ƒ, a ) and on R when \uo\ =s R.

Proof: The function u^ = d}u/dt} satisfies an équation of the form

= 0 , (2.9)

where F : M] -^ M is a polynomial. By projection of (2.9) on QH, we obtain

We take the scalar product of this équation with A2q<J^ in H :

- (A(ƒ'(«) M « + F(u, M*1*, .... M^
\A(f'(u) u^ + F (u, «<>>, . . . ,«ö-D)) || A 2 9 0 ) | . (2.10)
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We now assume t sufficiently large, t ^ t', so that (1.9) and (1.10) hold for
u and its first ƒ time derivatives w(i), 1 ̂  / ^ ƒ. Then, thanks to the algebra
property of H2(fï), it is easy to check that

s ic , V r ^ f . (2.11)

Hence, coming back to (2.10), we have for t == t',

d_
di

The inequality (2.12) is similar to (2.6) and we conclude the proof of
Proposition 2.2 by computations similar to the ones following (2.6) in the
proof of Proposition 2.1. The details are omitted.

3. THE APPROXIMATE MANIFOLDS Jtx AND M2

3.1 The approximate manifold Mx

As mentioned in the Introduction, the different approximate inertial
manifolds are constructed by introducing simplified forms of équation (2.3).
The first manifold Jix corresponds to the simplest approximation. Thanks
to Propositions 2.1 and 2.2, we know that q and q' = dq/dt are small for
large time. Therefore, we can expect that AQf (p) is a good approximation
of AQfip + q), while q' can be neglected. This leads us to replace (2.3) by
the following approximate équation

A2q+AQf(p) = 0. (3.1)

A rigorous proof of this heuristical argument will be given below.
For p given in PH, the resolution of (3.1) is easy and we dénote by

qx its solution

(3.2)

The graph of the function <bx : PH -• QD(A2) defines a smooth (analytic)
manifold Jtx in H of dimension m. Our aim here is to show that the
solutions of (1.6) (1.7) are attracted by a thin neighbourhood of

THEOREM 3.1 : Assume that (1.2) (1.3) hold. Then for t sufficiently large,
t 5= tf, any orbit of (1.6) (1.7) remains at a distance in H of Jt^ bounded by

vol. 23, n°3, 1989
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K83, K an appropnate constant, the constant K dépends on (fï, ƒ, a) and
f* dépends on (O,, ƒ, a ) an<i <?« i? w&e/î |wo| ̂ a , and \uo\ ^ R

Remark 3 2 The constant K m Theorem 3 1 dépends only on (O? ƒ, a ) ,
ît is m particular independent of u0 m //a and m Therefore, the orbits enter
a neighbourhood of Jt\ that can be made arbitrarily thm by choosmg m
sufficiently large (î e ^%/^m +1 sufficiently small) Note also that the
transient time t* is independent of m

Remark 3 3 In view of Proposition 2 1 and Theorem 3 1, the distance of
the orbits to M\ is of better order than their distance to the Imear space
q = 0 This suggests that Jix gives a better approximation to the orbits than
PH This remarks leads to the introduction of new numencal schemes [9]

Proof of Theorem 3 1 Let u = p + q be an orbit of (1 6) (1 7) lymg m
Ha For every r > 0, we defme qi(t) = *ï>i(p(0) Then,/>(*) + q\{t) hes in
dix and

dist {u{t),Jtx) = mf |w( r ) - i ; | ,

Therefore» it suffices to evaluate the norm of

Substracting (2 3) from (3 1) with q = q\ we fmd

A 2 X I = Ö ^ ( / ( P + q)-f(p)) + q',

and
| ^ 2 Xi |^ |A( / (p + < 7)-/07)) | + | 9 ' | (3 3)

We have

f(p + q)-f(p)= f ff(p

=? r ƒ'(
Jo

Next, smce H2(O) is a multiplicative algebra, we obtam

| A ( / ( p + ^ ) - / ( p ) ) H c 1 | | ^ | | i ï 2 f' | | ƒ ' ( P + 0 9 ) l l ^ n ) ^ ( 3 4 )
Jo

as well as
2{p 1}

( n ) , e e ] O , l [ (35)

Modélisation mathématique et Analyse numérique
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Since p, q are bounded in H2(Q) for large t by constants depending only on
(H, ƒ, a ) (see (1.9)), (3.5) implies that, for large t9

llfl (n )SSK> VOe ] 0 , l [ .

Hence, coming back to (3.4)

\Mf(P + q)-f(p))\**\\q\\H\n) for large t. (3.6)

But, q e QH has zero mean value

qeH0= iveH, v(x)dx =

and it is classical that, on D(A) Pi Ho, \A . | is a norm equivalent to the one
induced by H2{£1) : there exists a constant c2 depending only on
fl such that

(3.7)

Thus, (3.6) gives

\A(f(p + q) — ƒ (p))\ *^ KC2\Aq\ . (3.8)

Inserting this inequality in (3.3), we obtain finally

^ (thanks to (2.4) and (2.8) ) , (3.9)
K K K

which yields, since Xi e QD(A2),

I^Xil *z — 9 | Xi I ^ — . (3.10)

Theorem 3.1 is proved.

3.2 The approximate manifold Jï2

Theorem 3.1 above provides the existence of a manifold M\ such that the
orbits enter a neighbourhood of Jix of thickness KO3. Looking at its proof,
we see that this bound on the thickness of the neighbourhood is related to
the approximation of the nonlinear term in (2.3) (see (3.9) where the
contribution of the nonlinear term is of the order of K/A while the
contribution of the time derivative is of the order of K /A 2 ) . By improving
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the approximation of this term, we now construct a second manifold
Jt2 which pro vides a better order approximation to the orbits. Indeed,
taking advantage of q\{t) = ®i(p(t)), we can now approximate
QAf{p + q) by QAf{p + qx), and introducé the following simplified form
of équation (2.3)

2
 qi) = 0. (3.11)

This leads to the following définition of Ji2. For ƒ> e PH, we define, as in
Section 3.1, qx by (3.2). Then, the resolution of (3.11) gives

qi^^iip)- (3.12)

The graph of <£>2 : PH-+ QD(A2) defines an analytic manifold Jt2 of
dimension m in H and we can state

THEOREM 3.4 : Assume that (1.2) (1.3) hold. Then, for t sufficiently large,
t ^tf, any orbit of (1.6) (1.7) remains at a distance in H of Jt2 bounded by
KO4, K an appropriate constant ; the constant K dépends on (fit, ƒ, a ) and
t* dépends on (O, ƒ, a ) and on R when |wo| ^ a and |wo| ^ ^*

Remark 3.5 : A remark similar to Remark 3.2 can be made here. The
constants K and tf are independent of m. The orbits enter a neighbourhood
of Ji2 that can be made arbitrarily thin by choosing m sufficiently large.
Moreover, their distance to Ji2 is of order better than to Jtx by a factor S.
Their distance to Ji2 is of order better than to PH by a factor
Ô2.

Proof of Theorem 3.4 : The proof follows the same steps as that of
Theorem 3.1 and is only sketched.

Let u(t)=p(t) + q(t) be an orbit of (1.6) (1.7) lying in Ha. We define
q1(t) by (3.2) and q2(t) by (3.12) and we aim to estimate \\2\ where
X2(0 = « 2 ( 0 - 9 ( 0 - We have

( )f( )) q' •

Then, as for (3.8), one obtains

Hence
2 + \q'\ •

Making use of (3.10) (2.8), we infer from (3.13)

IVPAN Modélisation mathématique et Analyse numérique
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which implies, since \i e QD(A2),

\AXl\ ^ > | X21 ̂  ^4 • (3-14)

This shows Theorem 3.4.

4. THE APPROXIMATE MAJVIFOLDS J#3 AND Ji4

The aim of this Section is to construct two manifolds M^ and
Mi which provide better order approximations to the orbits than
Mi and M2. This will in particular be obtained by introducing convenient
approximations of the first order time derivatives which were previously
neglected in the construction of Mi and M2-

4.1 The approximate manifold , / /3

The simplified form of équation (2.3) for the manifold Ji-^ is obtained by
approximating QAf(p+q) by QAf(p + q2), q2 given by (3.12), and
q' by q[ defined as follows. By differentiating (2.3) with respect to
t, we find

In (4.1), p' given by (2.2) is approximated by

p[ = _ A2p - PA(p + qx) , qx given by (3.2) ; (4.2)

also q" is neglected and the nonlinear term QAf'(p + q) (pf + q') is
approximated by QAf'(p)p[ ; the approximate value q[ is given by

0. (4.3)

Hence, (2.3) is now replaced by the approximate équation

q[ 4- A2q + QAf (p + q2) = 0 . (4.4)

The manifold M3 is therefore defined as follows. For p G PH, we define
as in Section 3, qx and q2 by (3.2) and (3.12). Then, we define
p{ by (4.2) and the resolution of (4.3) gives q[. Finally, by solving (4.4), we
obtain

ft = * 3 (P) - (4-5)

The graph of the function <ï>3 : PH -> QD (A2) defines an analytic manifold
Jf3 of dimension m in H. This manifold provides a better order approxi-
mation to the orbits than Jt2 and this is stated in

vol. 23, n°3, 1989
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THEOREM 4.1 : Assume that (1.2) (1.3) hold. Then, for t sufficiently large,
t =s= £3*, any orbit oƒXI.6) (1.7) remains at a distance in H of M^ bounded by
K85, K an appropriate constant ; the constant K dépends on {Ci, ƒ, a ) and
£3* dépends on {Ci, ƒ, a ) and on R when |ûo| === a and \UQ\ ===7?.

Remark 4.2 : The constants K and tf are independent of m. The orbits
enter a neighbourhood of M-i, that can be made arbitrarily thin, by choosing
m sufficiently large. Moreover, their distance to Jt-$ is of order better than
to Ji2 by a factor 8. Their distance to Ji-^ is of order better than to
PH by a factor ô3.

Proof of Theorem 4.1 ; Let u{t) = p{t) + q{t) be an orbit of (1.6) (1.7)
lying in Ha. We define qx{t) and q2{t) by (3.2) and (3.12), p't{t) and
q[ ( 0 by (4-2) and (4.3), #3(0 by the resolution of (4.4). In order to evaluate
the distance of u{t) to M^ it suffices to estimate jX31 where X3(0 =
#3(0 — <?(0* Substracting (2.3) from (4.4) with q = q3, we obtain

^2X3 = 9' - 9i + QA{f(p + q) — fip + ̂ 2)) • (4-6)

Since p , 3 and g2
 a r e bounded in H2{Ci) for large t by constants depending

only on {Ci, f, a ), using the algebra property of H2{&), one can show as for
(3.8) that, for large t,

\QA(f{p+q)-f(p + q2))\ ^K\A(q~q2)\ = K\AX2\ ,
^ (using (3.14)), (4.7)

Next, we claim that

Indeed, substracting (4.1) from (4.3), we obtain

A\q[~ q') = q» + QA[f'(p + q)(p' + q') - f' (p) p[] .

Hence

\A2(q[-q')\^\q"\ + \Af'(p+q)q'\ +

+ \A(f'(p + q)-f'(p))p'\ + \Af'(p)(p'-p[)\. (4.9)

We now majorize the different terms in the right-hand side of (4.9). By
(2.8), we have

\q"\ ^ 4 > for large*. (4.10)
A
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Then, the algebra property of H2(£l) implies

{a)\\q<\\HHa)

(4.11)

Since q' e HQy using (3.7), we infer from (4.11)

(thanks to (2.8)) , (4.12)
K

A *

Next, similar arguments give successively

\Ap'\ ,

\Au'\ ,

which yields, along with (2.4) (1.10)

^ j . (4.13)

Finally, for the last term in the right-hand side of (4.9)

|^/ ' (P)(P '-^) |*C1 | | / ' (p) | |H i ( n ) |p ' - /T{| |H Î ( o ) ,

* «&'- AWy
Substracting (4.2) from (2.2), we obtain

\p'-p[\*\A(f(p+qi)-f(p+q))\ ,

* K\A(qi - q)\ = K\AXI\ , (4.15)
^ (by (3.10)) ,

Due to the définition of PH, we have that

\A2v\ *z\\Av\ , \Av\^\\v\, MvePH. (4.16)
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Also, since {| . |2 4- \A . | 2 } 1 / 2 is on D(A) a norm equivalent to the one
induced by H2(Cl), there exists a constant c3 depending only on CL such that

WV\\H^)^C3{\V\2+\AV\Y2, Vi>eD(A). (4.17)

Therefore, combining (4.17) (4.16) (4.15), we obtain

(4.18)

This gives, coming back to (4.14)

~. (4.19)

To conclude, by combining (4.9) and the estimâtes (4.10) (4.12) (4.13)
(4.19), we obtain that

\A2(q' - q{)\ ̂ - £ (4.20)

which gives (4.8), since q' - q[ e QD(A2). Finally, it follows from (4.6)
(4.7) (4.8) that

I 3 I ̂  A3 '

which yields since X3 <= QD(A2),

s ^ j , | x 3 | ^ - ^ , (4.21)

Theorem 4.1 is proved.

4.2 The approximate manifold JtA

This new manifold will give better order approximation to the orbits
thanks to improved approximations of the nonlinear term and of
q' in (2.3) (while q" is still neglected). Making use of q3 = ̂ ( p ) ,
QAfip + q) is now approximated by QAf(p -f- q3). We also define a new
approximate value of p\ namely p2, by

Pi = - A2p - PAf{p + q2) , q2 given by (3.12) , (4.22)

and a new approximate value of q', namely ql
2, by

A2qi + QAf' (p + qi)W + q[) = 0, qu q[ given by (3.2) (4.3) . (4.23)
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The simplified form of (2 3) is given by

q'i + A2q 4- QAf{p + q3) = 0 (4 24)

To p given in PH, we associate ^ by (3 2), ^2 by (3 12), <?{,
«3 by (4 3) (4 5) We then defme p{ and q^ by (4 22) (4 23) Finally the
resolution of (4 24) gives

<?4 = <Ï>4(P) (4 25)

The graph of <ï>4 PH~+QD(A2) defmes an analytic mamfold Jt± of
dimension m m H The orbits enter a thin neighbourhood of M4, as shown
m

THEOREM 4 3 Assume that (1 2) (1 3) hold Then for t sufjïciently large,
t ~zt*7 any orbit of(l 6) (1 7) remains at a distance in H o f'M\ bounded by
KO6, K an appropnate constant, the constant K dépends on (fl, ƒ, a.) and
f4* dépends on (Cl, f, a) and on R when \ûo\ =s a and \uo\ ^R

Remark 4 4 The constants K and f4* are independent of m The orbits
enter a neighbourhood of Ji^ that can be made arbitrarily thin, by choosing
m sufficiently large Their distance to M^ IS of order better than to
<x#3 by a factor ô and to MA. than to PH by a factor ô4

Proof o f Theorem 4 3 The proof follows the same steps as that of
Theorem 4 1 and we only give hère the main estimâtes Let u(t) —
P(t) + q(t) be an orbit of (1 6) (1 7) lying m Ha We defme qi(t)by(3 2),
q2(t) by (3 12), q{(t), q3(t) by (4 3) (4 5), jJ(O> # ( ' ) by (4 22) (4 23) ,
q^it) is given by the resolution of (4 24) and we aim to estimate

? ( O We have

2X4 = q'-& + QMfiP + q,) -f(p+q))

\q'-qi\+K\A{q3-q)\ (4 26)
(thanks to (4 21))

Then, by substracting (4 1) from (4 23), we obtain

A\q2 -q') = q" + QA [f'(p + q)(p' + q') - f''(p

= q" + QA [(ƒ'(p + q)-f'(p+
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which yields for large t,

| |H2(n). (4.27)

Then, using (2.8) (3.10) (4.20), we infer from (4.27)

!^2(f2-^)H^4-K||^-^||w2(or (4.28)

From (2.2) (4.22), we have

p'-Pi = PA(f(p + q2)

which, using also (3.14), implies for large

\P' -Pi\ ̂ *\ f ' i ' (4.29)
K

Hence

Combining (4.30) with (4.28), we obtain

A ' ' (4.31)

and, coming back to (4.26),

\AX4\^j-5, |X4H-^. (4.32)

Theorem 4.3 is proved.

5. THE APPROXIMATE MANIFOLDS Jts AND Jf6

The goal of this section is to dérive the existence of two more manifolds
Ji5 and M§ which give better order approximations to the orbits than
M^ and Jt± These manifolds will be constructed by considering in
particular approximations of the second order time derivative of q (which up
to now was neglected).
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5.1 The approximate manifold J/5

The équation for q" reads

<?'" + A2q" + QA [f'(p + q)(p" + q") + ƒ"(? + ?)(p' + <?' )2] = 0 (5.1)

and p" is given by

p" = -A2p'-PAf'(p+q)(p'+q'). (5.2)

We first define a new approximation of p ', namely j?3', by

^ = - A 2
J p - P A / ( p + ? 3 ) ) (5.3)

and an approximation of/?", namely p'{, by

2 ql). (5.4)

Then, in (5.1), qm is neglected and the approximate value of q", namely
q'{, is given by the resolution of

A2q'{ + QA[f'(p)pï + f"(p)(p[)2] = 0 . (5.5)

Finally, the new approximation of q', namely #3, is defined by

?i+A2q$ + QAf'(p + q2)Q% + qi) = 0, (5.6)

and the approximate form of (2.3) is

2 q,) = 0. (5.7)

Note that the formulas (5.3) (5.7) are similar to (4.22) (4.24), while (5.6)
differs mainly from (4.23) by the introduction of the approximation of

This leads to the following définition of Ji5. For p e PH, we define
qx by (3.2), q2 by (3.12); p[, q{, q3 by (4.2) (4.3) (4.5), pi, q^
qA by (4.22) (4.23) (4.25), j ^ p f , q'{, # , by (5.3)-(5.6) and the resolution of
(5.7) gives finally

The graph of <ï>5 : PH^> QD(A2) defines an analytic manifold J?5 of
dimension m in H and we have

THEOREM 5.1 : Assume that (1.2) (1.3) hold. Then for t sufficiently large,
t zstf, any orbit of (1.6) (1.7) remains at a distance in H of Ji$ bounded by
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KO7, K an appropriate constant ; the constant K dépends on (£2, ƒ, a ) and
r5* dépends on (fty f, a ) and on R when |ûo | =s= a and, |zio| ̂  R.

Remark 5.2 : The constant K and f5* are independent of m. The orbits
enter a neibourhood of jft'5 that can be made arbitrarily thin, by choosing
m sufficiently large. Their distance to Jt$ is of order better than to
Ji± by a factor 8 and to Jt$ than to PH by a factor 85.

Proofof Theorem 5.1 ; Let u(t) = p(t) + q(t)be an orbit of (1.6) (1.7)
lying in Ha. We define q,(t) by (3.2), q2(t) by (3.12), p{(0? ?{(0»
9 3 ( 0 by (4.2) (4.3) (4.5), ^ ( 0 , ^ ( 0 , ?4(0 by (4.22) (4.23) (4.25),
^3(0, Pï(t), q[f(t), # ( 0 by (5.3)-(5.6) and qs(t) by (5.8). We aim to
estimate the norm of Xs(0 = ̂ s(^) - ̂ (^)-

We start by proving the following Lemma which gives the order of the
different approximations introduced above.

L E M M A 5.3 : For sufficiently large t, t^t*, we have

Ip'-^l*-!, (5.9)

\P"-PÏ\^J-2, (5.10)

\q"-q['\^^, (5.11)

k'-tfl*^- (5-12)

Proof: Substracting (2.2) from (5.3) we have

(5.13)

Since, p , q and <y3 are bounded in H2{CL) for large f by constants depending
only on (Ci, f, a), it follows from (5.13) by using the algebra property of
H2(fl)

\Pi-P'\ «Kll9-?3llH^)'
« (thanks to (3.7)) ,

which, along with (4.21), gives (5.9).
Then, (5.2) and (5.4) imply

Pl-p" = A2(p' -pi) + PA(f'(p + q)(p' + q')-f'(p

(5.14)

\PÏ-P-\ «s | A V - ^ ) | + \Mf(p + q)-f'(p + qi))(p'+q')\ +
p+qi)(p'-pi)\ + \Af'(p + qï){q> - q[)\ .
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Making use of (4.16) and (5.9), we have

\A2(P'-Pi)\«tf\p'-Pi\ ( 5 1 5 )
K

Also,

(by (3.10)) , (5.16)
K

Next

which yields thanks to (4.17) (4.16) (4.30)

\Af'(p+ql)(p'-p{)\^«c3(l + k2)y2\p>-pï\ ,
K

Finally, for the last term in the right-hand side of (5.14)

\Af(p + qi)(q' - q[)\ *K\A(q' - q[)\ ,
« (thanks to (4.20)) , (5.18)

K

72 '

Combining (5.14) and the estimâtes (5.15)-(5.18) provides

i.e. (5.10).
We now aim to show (5.11). By (5.1) (5.5), we have

A\q'{ - q") = q'" + QA [f'(p + q)(p" + q") +

+ q'f - f'(p)PÏ- f"(p)(Plf] • (5.19)

Using again the algebra property of H2(fl) and (3.7), it follows from (5.19)

\A2W-q")\ « \q'"\+«{\Aq\ + \Aq"\ + ||/>"-/>{'||„2(n) +
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which along with (2,8) (2.4) (5.10) (4,18) gives

|^2(«-«-)|*x,
hence (5.11).

Finally, substracting (4.1) from (5.6), we have

A\<& -q') = q" - q'{ + QA(f'(p + q)(p' +q')

This yields

and by virtue of (5.11) (3.14) (5.9) (4.31)

\A2(q^-q')\^~,

hence (5.12).
The proof of Lemma 5.3 is complete.

It is now easy to conclude the proof of Theorem 5.1. Substracting (2.3)
from (5.7) with q = q5, we obtain

A2XS = q'-ft + QA(f(p+q) - f(p+qA)) .
(5.20)

Therefore, using (5.12) (4.32) we infer from (5.20)

which gives

Theorem 5.1 is proved.

5.2 The approximate manifold ,///6

This manifold is constructed by improving the different approximations of
Section 5.1. In (5.1), we now approximate p' by

PÏ = -A2p-PAf(p+q4), (5.21)
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by

Pi = " Alp\ - PAf' (p + q2)(pi + ft) . (5.22)

Then, the new approximate value of q", namely ft', is given by

A1 q'i + Ö^[/ '(P +9i)(?2 + ?f) + f"(P+qi)(P2 + ft)2] = 0 , (5.23)

and the new approximate value of q'9 namely q^9 by

q'i +A2q>A + 0A/ ' (p + ? 3 ) (# + # ) = 0 . (5.24)

The simplified form of (2.3) is here

q\ + A2q + 2^4/(p + «5) = 0 • (5-25)

The manifold M§ is defined as follows. To p e P/f, we associate
<?j, l = e ï ^ 5 , p/ , i = 2,3, q[, l ^ i ^ 3 , g{', defined in the previous
Sections. Then (5.21)-(5.24) give p\, p%, ft', 4̂ and the resolution of (5.25)
provides

?6 = *6(P)- (5.26)

The graph of <ï>6 : P/f -> Q£> (A2) defines an analyüc manifold Jt§ of
dimension m in PH and we have

THEOREM 5.4 : Assume that (1.2) (1.3) AoW. 7%en /or ? sufficiently large,
t^t*, any orbit of (1.6) (1.7) remains at a distance in H of M^ bounded by
KO8, K arc appropriate constant ; the constant K dépends on (H, ƒ, a ) awJ
r6* dépends on {Cl, ƒ, a ) an î on /? vv/zew |üo| ^ a, | wo| ^ /?.

Remark 5.5 : The constants K and r6* are independent of m. The orbits
enter a neighbourhood of Jt§ that can be made arbitrarily thin, by choosing
m sufficiently large. Their distance to ^#6 is of order better than to
Jt$ by a factor ô and to Jth than to PH by a factor ô6.

The proof of Theorem 5.4 follows the same steps as that of Theorem 5.1
and is omitted. We only note here that the analogs of the estimâtes of
Lemma 5.3 are
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APPENDIX A

PROOF OF PROPOSITION 1.1

We prove (1.10) using an induction argument. More precisely, we will
dérive by induction on ƒ e Jf the existence of t} depending on ƒ,
(H, ƒ, a ) and R such that

I
: , for

t + 1
Vf

i) Initialization o f the induction (J = 0). The estimate (A.l)0 is (1.9),
while (A.2)o is also proved in [11] to which the reader is referred.

ii) The induction argument. We now assume that (A.l)y, (A.2); hold for
some j e / and we prove that the same is true for (j + 1 ).

The function u^ + l^ satisfies an équation of the form

0, (A.3)+ Au
at

where F : 3îl + 1 ->- 3î is a polynomial. Taking the scalar product of (A.3) by
M 0 +1 ) m /ƒs w e obtain

For n^3, we have H2(Q,) c> L 0 0 ^ ) and the induction assumption
(A.l)y implies that

Hence

dt
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Then, using the induction assumption (A.2)y, we can apply the uniform
Gronwall Lemma (see [14] for instance) to (A.4) and this gives successively

iT 0 +1)12 u f ! > . , i /A o

-ï

We now multiply (A.3) by A2u{j + 1) in H and we have

(A.7)

Since H2(ft) is a multiplicative algebra, we infer from (A.l)7 :

which yields

(A.8)

Making use of (A.5) (A.6), we can apply the uniform Gronwall Lemma to
(A.8) and obtain

\Au^ + ̂ ^\2 < K V? >- t -4-2 (A9>)

\A2u(} + 1)\2 ds^K , Wssfj + 2 . (A.IO)

This concludes the induction argument since (A.5) (A.9) give (A. l^ + i,
while équation (A.3) combined with (A.IO) yields

r
i.e. (A.2)/ + 1.

Proposition 1.1 is proved.

vol. 23, n°3, 1989



488 M MARION

REFERENCES

[1] J W CAHN, Spmodal décomposition, Trans Met Soc o f AIME, 248 (1968),
166-180

[2] J W CAHN and J E HILLIARD, Free energy of a non uniform system I

Interfacial free energy, / Chem Phys, 28 (1958), 258 267

[3] P CONSTANTIN, C FOIAS, B NICOLAENKO and R TEMAM, Intégral mamfolds

and mertial mamfolds for dissipative partial drfferential équations, / Math
Pures Appl, 67 (1988)

[4] C For AS, O MANLEY and R TEMAM, Sur l'interaction des petits et grands

tourbillons dans des écoulements turbulents, C R Acad Sa Paris, Serie I} 305
(1987) 495-500, and Modellmg of the interaction of small and large eddies m
turbulent flows, Math Mod and Numer Anal, 22 (1988) 93-114

[5] C Foi AS, G R SELL and R TEMAM, Variétés inertielles des équations

différentielles dissipatives, C R Acad Sa Pans, Sériel, 301 (1985) 139-141,
and Inertial mamfolds for nonlinear evolutionary équations, / Diff Equ , 73
(1988), 309-353

[6] J S LANGFR, Theory of spmodal décomposition m alloys, Ann o f Phys , 65
(1971), 53-86

[7] J MALLET-PARET and G R SELL, to appear

[8] M MARION, Approximate mertial mamfolds for reaction diffusion équations m

high space dimension, J Dynamics and Differential Equations, 1 (1989)

[9] M MARION and R TEMAM, Nonlinear Galerkin methods, SIAM J Num

Anal, 26 (1989)

[10] B NICOLAENKO and B SCHEURER, Low-dimensional behavior of the pattern

formation Cahn-Milliard équation, m Trends m the Theory and Practice of
Nonlinear Analysis, V Lakshmikantham ed , North-Holland, 1985

[11] B NICOLAENKO, B SCHEURER and R TEMAM, Some global dynamical

properties of a class of pattern formation équations, Comm Partial Dtff Equ ,
to appear (see also IMA preprint n° 381, Mmneapohs)

[12] A NOVICK-COHEN and L A SEGEL, Nonlinear aspects of the Cahn-Hilliard

équation, Physica D} 10 (1984), 277-298

[13] R TEMAM, Variétés inertielles approximatives pour les équations de Navier-

Stokes bidimensionnelles, C R Acad Sa Pans, Série II, 306 (1988), 399-402

[14] R TEMAM, Infinité dimensional dynamical Systems m rnechamcs and physics,
Applied Mathematics Series, vol 68, Springer-Verlag, New York, 1988

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modellmg and Numencal Analysis


