Continuity of attractors
ESAIM: Modélisation mathématique et analyse numérique, Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987, Tome 23 (1989) no. 3, pp. 519-533.
@article{M2AN_1989__23_3_519_0,
     author = {Raugel, Genevi\`eve},
     title = {Continuity of attractors},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {519--533},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {23},
     number = {3},
     year = {1989},
     mrnumber = {1014489},
     zbl = {0687.58021},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1989__23_3_519_0/}
}
TY  - JOUR
AU  - Raugel, Geneviève
TI  - Continuity of attractors
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1989
SP  - 519
EP  - 533
VL  - 23
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1989__23_3_519_0/
LA  - en
ID  - M2AN_1989__23_3_519_0
ER  - 
%0 Journal Article
%A Raugel, Geneviève
%T Continuity of attractors
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1989
%P 519-533
%V 23
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1989__23_3_519_0/
%G en
%F M2AN_1989__23_3_519_0
Raugel, Geneviève. Continuity of attractors. ESAIM: Modélisation mathématique et analyse numérique, Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987, Tome 23 (1989) no. 3, pp. 519-533. http://archive.numdam.org/item/M2AN_1989__23_3_519_0/

[1] A. V. Babin, M. I. Vishik (1), Regular attractors of semigroupsand evolution quations, J. Math. Pures et Appl. 62, pp. 441-491, 1983. | MR | Zbl

[2] A. V. Babin, M. I. Vishik (2), Unstable invariant sets of semigroups of nonlinear operators and their perturbations, Uspekhi Mat. Nauk 41, pp. 3-34, 1986, Russian Math. Surveys 41, pp. 1-41, 1986. | MR | Zbl

[3] P. Brunovsky, S.-N. Chow, Generic properties of stationary solutions of reaction-diffusion equations, J. Diff. Equat. 53, pp. 1-23, 1984. | MR | Zbl

[4] G. Cooperman, α-Condensing maps and dissipative systems, Ph. D. Thesis, Brown Umversity, Providence, R.I., June 1978.

[5] J. M. Ghidaglia, R. Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures et Appl., 66, pp. 273-319, 1987. | MR | Zbl

[6] J. K. Hale (1), Asymptotic behavior and dynamics in infinite dimensions, in Nonlinear Differential Equations, J. K. Hale and P. Martinez-Amores, Eds., Pittman 132, 1985. | Zbl

[7] J. K. Hale (2), Asymptotic Behavior of Dissipative Systems, Surveys and Monographs, Vol. 25, A.M.S., Providence, R.I., 1988. | MR | Zbl

[8] J. K. Hale, X. B. Lin, G. Raugel, Upper-semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. of Comp., 50, pp. 89-123, 1988. | MR | Zbl

[9] J. K. Hale, L. Magalhaes, W. Oliva, An Introduction to Infinite Dimensional Dynamical Systems, Applied Math. Sciences, Vol. 47, Springer Verlag, 1984. | MR | Zbl

[10] J. K. Hale, G. Raugel (1), Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Equat., 73, pp. 197-214, 1988. | MR | Zbl

[11] J. K. Hale, G. Raugel (2), Lower-semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura e App., to appear. | MR | Zbl

[12] J. K. Hale, G. Raugel (3), Lower-semicontinuity of the singularly perturbed hyperbolic equation, DDE., to appear. | Zbl

[13] J. K. Hale, G. Raugel (4), A reaction-diffusion equation on a thin domain, preprint.

[14] J. K. Hale, G. Raugel (5), Morse-Smale property for a singularly perturbed hyperbolic equation, in preparation.

[15] J. K. Hale, C. Rocha, Interaction of diffusion and boundary conditions, Nonlinear Analysis, T.M.A., 11, pp. 633-649, 1987. | MR | Zbl

[16] A. Haraux, Two remarks on dissipative hyperbolic problems, Séminaire du Collège de France, J. L. Lions Ed., Pittman, Boston, 1985.

[17] D. Henry (1), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math, Vol. 840, Springer Verlag, 1981. | MR | Zbl

[18] D. Henry (2), Some infinite-dimensional Morse-Smale Systems defined by parabolic partial differential equations, J. Diff. Equat. 59, pp. 165-205, 1985. | MR | Zbl

[19] D. Henry (3), Generic properties of equilibrium solutions by perturbation of the boundary, Preprint of the « Centre de Recerca Matematica Institut d'Estudis Catalans», 37, 1986. | MR | Zbl

[20] X. Morà, J. Sola-Morales, The singular limit dynamics of semilinear damped wave equations, J. Diff. Equat., to appear. | MR | Zbl

[21] J. Palis, W. De Melo, Geometric Theory of Dynamical Systems, Springer Verlag, 1982. | MR | Zbl

[22] C. Rocha, Generic properties of equilibria of reaction-diffusion equations with variable diffusion, Proc. Roy. Soc. Edinburgh, 101A, pp. 45-56, 1985. | MR | Zbl

[23] J. Smoller, A. Wasserman Generic bifurcation of steady-state solutions, J.Diff. Equat. 52, pp. 432-438, 1984. | MR | Zbl