The local projection P 0 -P 1 -discontinuous-Galerkin finite element method for scalar conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) no. 4, p. 565-592
@article{M2AN_1989__23_4_565_0,
     author = {Chavent, Guy and Cockburn, Bernardo},
     title = {The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {4},
     year = {1989},
     pages = {565-592},
     zbl = {0715.65079},
     mrnumber = {1025072},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_4_565_0}
}
Chavent, Guy; Cockburn, Bernardo. The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) no. 4, pp. 565-592. http://www.numdam.org/item/M2AN_1989__23_4_565_0/

[1] Y. Brenier and S. Osher, Approximate Riemman Solvers and Numerical Flux Functions, ICASE report n° 84-63 (1984). | Zbl 0597.65071

[2] G. Chavent and B. Cockburn, Convergence et Stabilité des Schémas LRG, INRIA report.

[3] G. Chavent and G. Salzano, A finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comp. Phys., 45 (1982), pp. 307-344. | MR 666166 | Zbl 0489.76106

[4] B. Cockburn, Le Schéma G-k/2 pour les Lois de Conservation Scalaires, Congrès National d'Analyse Numérique (1984), pp. 53-56.

[5] B. Cockburn, The Quasi-Monotone schemes for Scalar Conservation Laws, IMA Preprint Séries n° 263, 268 and 277. To appear in SIAM J. Numer. Anal. | MR 1025091

[6] A. Harten, On a class of high-resolution total-variation-stable finite-differene schemes, SIAM J. Numer. AnaL, 21 (1984), pp. 1-23. | MR 731210 | Zbl 0547.65062

[7] C. Johnson and J. Pitkaranta, An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation, Math, of Comp., 46 (1986), pp.1-26. | MR 815828 | Zbl 0618.65105

[8] A. Y. Leroux, A Numerical Conception of Entropy for Quasi-Linear Equations, Math. of Comp., 31 (1977), pp. 848-872. | MR 478651 | Zbl 0378.65053

[9] P. Lesaint and P. A. Raviart, On a Finite Element Method for Solving the Neutron Transport Equation, Mathematical Aspects of Finite Element in Partial Differential Equations, Academic Press, Ed. Carl de Boor, pp. 89-145. | Zbl 0341.65076

[10] S. Osher, Convergence of Generalized MUSCL Schemes, SIAM J. Numer. Anal., 22 (1984), pp. 947-961. | MR 799122 | Zbl 0627.35061

[11] S. Osher, Riemman Solvers, the Entropy Condition and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. | MR 736327 | Zbl 0592.65069

[12] E. Tadmor, Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes, Math. Comp., 43 (1984), pp. 369-381. | MR 758189 | Zbl 0587.65058

[13] B. Van Leer, Towards the Ultimate Conservative Scheme, II Monotonicity and Conservation Combined in a Second Order Scheme, J. Comput. Phys., 14 (1974), pp. 361-370. | Zbl 0276.65055