@article{M2AN_1989__23_4_615_0, author = {Gonzalez de Paz, Raul B.}, title = {On the optimal design of elastic shafts}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {615--625}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {23}, number = {4}, year = {1989}, mrnumber = {1025075}, zbl = {0688.73063}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1989__23_4_615_0/} }
TY - JOUR AU - Gonzalez de Paz, Raul B. TI - On the optimal design of elastic shafts JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1989 SP - 615 EP - 625 VL - 23 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1989__23_4_615_0/ LA - en ID - M2AN_1989__23_4_615_0 ER -
%0 Journal Article %A Gonzalez de Paz, Raul B. %T On the optimal design of elastic shafts %J ESAIM: Modélisation mathématique et analyse numérique %D 1989 %P 615-625 %V 23 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1989__23_4_615_0/ %G en %F M2AN_1989__23_4_615_0
Gonzalez de Paz, Raul B. On the optimal design of elastic shafts. ESAIM: Modélisation mathématique et analyse numérique, Tome 23 (1989) no. 4, pp. 615-625. http://archive.numdam.org/item/M2AN_1989__23_4_615_0/
[1] A free boundary optimization problem. SIAM J. Math. Anal. 9(1978) pp.1179-1191. | MR | Zbl
,[2] Existence and regularity for a minimum problem with free boundary. J. Reine u. Angew. Mathematik 325 (1981)pp. 104-144. | MR | Zbl
and ,[3] Problems and methods of optimal structural design. Plenum Press, London (1983). | MR | Zbl
,[4] Espaces Vectoriels Topologiques, Hermann, Paris (1973).
,[5] Convex Analysis and Measurable Multifonctions. Lect. Notes in Math. no. 580, Springer-Verlag, New York (1977). | MR | Zbl
and ,[6] Optimisation, théorie et algorithmes. Dunod, Paris (1971). | MR | Zbl
,[7] Problems of shape optimal design in « Optimization of distributed parameter structures, NATO Proceedings » (Eds. Haug, E. J. and Cea, J. ). Sijthoff and Noordhoff (1981). | Zbl
,[8] An example of a max-min problem in partial differential equations. SIAM J. Control and Optimization (1970) pp. 305-316. | MR | Zbl
and ,[9] On the exixtence of a solution in a domain identification problem, J. Math. Anal. and Appl. 52 (1975) pp. 189-219. | MR | Zbl
,[10] Analyse convexe et problèmes variationels. Dunod, Paris (1974). | MR | Zbl
and ,[11] Regularity of solutions of non-linear variational inequalities. Arch. Rat. Mech. and Anal. 52 (1973) pp. 383-393. | Zbl
,[12] Elliptic Partial Differential Aquations of second order. Springer, New York (1977). | MR | Zbl
and ,[13] Sur un problème d'optimisation de domaine. Numer. Funct. Anal. and Optimiz. 5 (1982) pp. 173-197. | MR | Zbl
,[14] Geometrical properties of level sets of solutions to elliptic problems. Proc. Symp. in Pure Math. A.M.S. (1986), part 2, pp. 25-36. | MR | Zbl
,[15] An introduction to variational inequalities and their applications. Academic Press, New York (1980). | MR | Zbl
and ,[16] Torsion élastoplastique d'un arbre. J. de Mech. 13 (1974) pp. 367-318. | MR
,[17] Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles. Collèges de France (1966-67). | Numdam
,[18] Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR
,[19] Optimal shape design for elliptic systems. Springer-Verlag, New York (1984). | MR | Zbl
,[20] On the torsional rigidity of multiply-connected cross sections. Ann. Math. 52 (1950) pp. 154-163. | MR | Zbl
and ,[21] Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes. C. R. Acad. Sc. Paris, Serie A, 268, pp. 39-42 (janvier 1969). | MR | Zbl
,[22] Domain variational formulation for free boundary problem, in « Optimization of distributed parameter structures. NATO-Proceedings » (Eds. Haug, E. J. and Cea. J.). Sijthoff and Noordhoff (1981). | MR | Zbl
,[23] Indentification de domaines par déformation. Doctoral Thesis, Université de Nice (1979).
,[24] Boundary regularity for variational inequalities. Indiana Univ. Math. J. 29 (1980) pp. 495-511. | MR | Zbl
,