Théorie de la pénalisation exacte
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 2, p. 197-210
@article{M2AN_1990__24_2_197_0,
     author = {Bonnans, Joseph Fr\'ed\'eric},
     title = {Th\'eorie de la p\'enalisation exacte},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {24},
     number = {2},
     year = {1990},
     pages = {197-210},
     zbl = {0752.65051},
     mrnumber = {1052147},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1990__24_2_197_0}
}
Bonnans, Joseph Frédéric. Théorie de la pénalisation exacte. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 2, pp. 197-210. http://www.numdam.org/item/M2AN_1990__24_2_197_0/

[1] M. S. Bazaraa,J. J. Goode, Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982. | MR 669723 | Zbl 0497.90058

[2] A. Ben-Tal, Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980. | MR 600379 | Zbl 0416.90062

[3] D. P. Bertsekas, Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975. | MR 384144 | Zbl 0325.90055

[4] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982. | MR 690767 | Zbl 0572.90067

[5] J. F. Bonnans, Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989. | MR 993290 | Zbl 0678.90068

[6] J. F. Bonnans, Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986.

[7] J. F. Bonnans, D. Gabay, Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984. | MR 876712 | Zbl 0559.90081

[8] J. F. Bonnans,G. Launay, On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl. | Zbl 0794.93096

[9] C. Charalambous, A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978. | MR 514613 | Zbl 0395.90071

[10] F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976. | MR 414104 | Zbl 0404.90100

[11] S. P. Han, A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977. | MR 456497 | Zbl 0336.90046

[12] S. P. Han,O. L. Mangasarian, Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979. | MR 550845 | Zbl 0424.90057

[13] M. R. Hestenes, Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975. | MR 461238 | Zbl 0327.90015

[14] A. D. Ioffe, Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979. | MR 525025 | Zbl 0417.49027

[15] G. P. Maccormick, Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967. | MR 216866 | Zbl 0166.15601

[16] O. L. Mangasarian,M. Fromovitz, The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967. | MR 207448 | Zbl 0149.16701

[17] J. P. Penot, A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986. | MR 833007 | Zbl 0562.90078

[18] T. Pietrzykowski, An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969. | MR 245183 | Zbl 0181.46501

[19] B. Pschenichnyi,Y. Daniline, Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977). | Zbl 0389.65027

[20] S. M. Robinson, Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976. | MR 410522 | Zbl 0347.90050

[21] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970. | Zbl 0193.18401

[22] R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974. | MR 384163 | Zbl 0257.90046

[23] E. Rosenberg, Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984. | MR 769237 | Zbl 0587.90083