An upwind finite element method for singularly perturbed elliptic problems and local estimates in the L -norm
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 2, p. 235-264
@article{M2AN_1990__24_2_235_0,
     author = {Risch, Uwe},
     title = {An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty $-norm},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {24},
     number = {2},
     year = {1990},
     pages = {235-264},
     zbl = {0711.65092},
     mrnumber = {1052149},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1990__24_2_235_0}
}
Risch, Uwe. An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty $-norm. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 2, pp. 235-264. http://www.numdam.org/item/M2AN_1990__24_2_235_0/

[1] P. G. Ciarlet,P. A. Raviart, Maximum principle and uniforme convergence for the finite element method, Comp. Math. Appl. Mech. Engrg. 2 (1973) 17-31. | MR 375802 | Zbl 0251.65069

[2] T. Ikeda, Maximum principle in finite element models for convection-diffusion phenomena, North-Holland Publ. Comp., Amsterdam 1983. | MR 683102 | Zbl 0508.65049

[3] C. Johnson,A. H. Schatz,L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp. 49 (1987), 25-38. | MR 890252 | Zbl 0629.65111

[4] U. Nävert, A finite element method for convection-diffusion problems, Thés., Göteborg 1982.

[5] K. Ohmori,T. Ushijima, A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations, R.A.I.R.O. Anal. Numer. 18 (1984) 3, 309-322. | Numdam | MR 751761 | Zbl 0586.65080

[6] U. Risch, Ein hybrides upwind-FEM-Verfahren und dessen Anwendung auf schwach gekoppelte elliptische Differentialgleichuungssysteme mit dominanter Konvektion, Thes., Magdeburg 1986.

[7] A. H. Schatz, L. B. Wahlbin, On the FEM for singularly perturbed reaction diffusion problems in 2D and 1D, Math. Comp. 40 (1983), 47-89. | MR 679434 | Zbl 0518.65080

[8] M. Tabata, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ. 18 (1978), 327-351. | MR 495024 | Zbl 0391.65038

[9] L. Tobiska, Diskretisierungsverfahren zur Lösung singulär gestörter Randwertprobleme, ZAMM 63 (1983), 115-123. | MR 701842 | Zbl 0535.65058

[10] H. Yserentant, Über die Maximumnormkonvergenz der Methode der finiten Elemente bei geringsten Regularitätsvoraussetzungen ZAMM 65 (1985) 2,91-100. | MR 841262 | Zbl 0616.65103