The p-version of the finite element method for elliptic equations of order 2l
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 2, p. 265-304
@article{M2AN_1990__24_2_265_0,
     author = {Suri, Manil},
     title = {The $p$-version of the finite element method for elliptic equations of order $2l$},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {24},
     number = {2},
     year = {1990},
     pages = {265-304},
     zbl = {0711.65094},
     mrnumber = {1052150},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1990__24_2_265_0}
}
Suri, Manil. The $p$-version of the finite element method for elliptic equations of order $2l$. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 2, pp. 265-304. http://www.numdam.org/item/M2AN_1990__24_2_265_0/

[1] I. Babuska and M. Suri, The pand h-p versions of the finite element method. An overview, Technical Note BN-1101, Institute for Phy. Sci. and Tech., 1989, To appear in Computer Methods in Applied Mechanics and Engineering (1990).

[2] I. Babuska and M. R. Dorr, Error estimates for the combined h and p version of the finite element method, Numer. Math., 37 (1981), pp. 252-277. | MR 623044 | Zbl 0487.65058

[3] I. Babuska andM. Suri, The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 9 No. 4 (1987), pp. 750-776. | MR 899702 | Zbl 0637.65103

[4] I. Babuska and M. Suri, 9 The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. and Numer. Anal., 21, No. 2 (1987), pp. 199-238. | Numdam | MR 896241 | Zbl 0623.65113

[5] I. Babuska and B. A. Szabo, Lectures notes on finite element analysis, In préparation.

[6] I. Babuska,B. A. Szaboand I. N. Katz, The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), pp.515-545. | MR 615529 | Zbl 0487.65059

[7] I. Bergh and J. Loftstrom, Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | Zbl 0344.46071

[8] C. K. Chui, Multivariate Splines, SIAM, Philadelphia, 1988. | MR 1033490 | Zbl 0687.41018

[9] M. R. Dorr, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21 (1984), pp. 1180-1207. | MR 765514 | Zbl 0572.65074

[10] M. R. Dorr, The approximation of solutions of elliptic boundary-values problems via the p-version of the finite element method, SIAM J. Numer. Anal., 23 (1986), pp. 58-77. | MR 821906 | Zbl 0617.65109

[11] I. S. Gradshteynand I. M. Ryzhik, Table of Integrals, Series and Products, Academie Press, London, NewYork, 1965. | MR 197789 | Zbl 0521.33001

[12] W. Gui and I. Babuska, The h, p and h-p versions of the finite element method in one dimension, part 1 : the error analysis of the p-versioc ; part 2 : the error analysis of the h and h-p versions; part 3 : the adaptive h-p version, Numer.Math., 49 (1986), pp.577-683. | MR 861522 | Zbl 0614.65089

[13] B. Guo and I. Babuska, The h-p version of the finite element method I, Computational Mechanics, 1 (1986), pp. 21-41. | Zbl 0634.73058

[14] B. Guo andI. Babuska, The h-p version of the finite element method II, Computational Mechanics, 2 (1986), pp. 203-226. | Zbl 0634.73059

[15] G. H. Hardy,T. E. Littlewood andG. Polya, Inequalitie, Cambridge University Press, Cambridge, 1934. | JFM 60.0169.01 | Zbl 0010.10703

[16] I. N. Katz and D. W. Wang, The p-version of the finite element method for problems requiring C1-continuity, SIAM J. Numer. Anal., 22 (1985), pp. 1082-1106. | MR 811185 | Zbl 0602.65086

[17] V. A. Kondratev, Boundary-value problems for elliptic equations in domains with conic or corner points, Trans. Moscow Math. Soc, 16 (1967), pp.227-313. | MR 226187 | Zbl 0194.13405

[18] V. A. Kondratev andO. A. Oleinik, Boundary-value problems for partial differential equations in non-smooth domains, Russian Math. Surveys, 38 (1983), pp.1-86. | Zbl 0548.35018

[19] E. Reissner, A twelfth order theory of transverse bending of transversly isotropic plates, Z. Angew. Math. Mech., 63 (1983), pp.285-289. | Zbl 0535.73039

[20] E. Reissner, Reflections on the theory of elastic plates, Appl. Mech. Rev., 38 (1985), p. 11.

[21] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. | MR 290095 | Zbl 0207.13501

[22] P. K. Suetin, Classical Orthogonal Polynomials, Moscow, 1979 (In Russian). | MR 548727 | Zbl 0449.33001