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CONCENTRATED FORCES. ASYMPTOTIC STUDY (*)

by C. LEAL C1)

Communicated by E. SANCHEZ-PALENCIA

Abstract. — In this work we study the asymptotic behaviour of the solution of the two-
dimensional elasticity system. We consider Dirichlet data and the support of the body forces to be
of order e (a small parameter approaching zero). For the sake ofsimplicity, we study first the case
of Laplace's équation. We détermine the "outer" and the "inner" expansions and we perform
their matching. All the terms are weü-determined. By introducing a composite expansion, we
then show the convergence of the asymptotic process as e tends to zero. Finally, we generalize this
results for elasticity3s system.

Resumé. — Dans ce travail nous étudions le comportement asymptotique de la solution du
système de l'élasticité bidimensionnel. Nous considérons des données de Dirichlet et le support
des forces volumiques de l'ordre de z (a petit paramètre). Pour plus de simplicité, nous
développons l'étude dans le cas de l'équation de Laplace. Vétude asymptotique nous conduit à la
détermination des développements extérieur et intérieur et à leur raccordement. Tous les termes
sont bien déterminés. Grâce à l'introduction d'un développement composite, nous montrons
alors la convergence du processus lorsque s tend vers zéro. Enfin, nous généralisons ces résultats
au cas du système de l'élasticité.

0. INTRODUCTION

We study the asymptotic behaviour of the solutions of

àuE = fz i n û c i 2

= 0 on BÙ

where fE is not identically null only for x in a neighbourhood eD of the
origin.

The asymptotic study exhibits the singular character of the solution at the
origin : terms in log \x | and in \x\p withp <c 0 show up. This study is in the
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404 C. LEAL

gênerai framework of matched asymptotic expansions (Eckhaus [2], Van
Dyke [9]). There are "outer" and "inner" asymptotic expansions in the
standard variable x far from the origin and in the "microscopic variable"
y = x/e near the origin, respectively. All the terms of the expansions are
well defined and completely characterized.

After having performed a matching of the "outer" and "inner" solutions
we define a new expansion (see Van Dyke [9]) called the composite
expansion, valid in the whole domain ft, and which is of the förm

uz = B2[uiè(x) + v2(x/s) + c log e - uië(0)] +

In this expression wjeg(x) is the solution of Laplace's équation in Cl, with
non homogeneous Dirichlet boundary conditions on 3O, v2(y) is a solution
of an elliptic problem on IR2, regular at the origin and having a constant
behaviour at infinity.

All the terms of this expansion are rigorously justified by a convergence
theorem. We emphasize this aspect because in gênerai only in very
particular cases the first term of the expansion is rigorously justified (Lions
[4])-

In section 6 we generalize these results to the case where the force
fE is the form

( V e ) &~m , for x e eD

(x) , for x $ Sl\eD , meZ.

Finaiiy we generaiize this problem to the elasticity operator.
A similar study was already considered in [7] and [10] for the case of an

elastic two-dimensional body with a small hole.

Notation :

Vectors of the physical space R2 are written on the form u = (M1, M2).
Upper indices dénote terms in an asymptotic expansion, that is

n = unit normal to a curve
| x |, 9 - polar coordinates
8 - Dirac's distribution
da = da/dxa, a = (al9 ot2), | ot | = ax + a2

3. = di/dxi or ôi/3yi

btj - Kronecker symbol
[ | . | ] - jump of the enclosed quantities
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CONCENTRATED FORCES, ASYMPTOTIC STUDY 405

1. SETTING OF THE PROBLEM

Let H be a bounded domain of R2 containing the origin. Let also D be a
bounded domain of the auxiliar space M2 of variable y = (yu y2) containing
also the origin. We dénote by 9ft and by F the boundaries of Cl and of D,
respectively, which we assume to be sufficiently regular.

For E small enough we have the sheme (fig. la)

Figure la. Figure lb.

and we consider in H the following problem

(ï.i)

(1.2)

where

- A w E = / e in ü,

uz = O on afl

= \f(x/£) , for xe eD
lo , for x e fl\eZ5

with ƒ eL2(H) given.
Problem (1.1)-(1.2) is well posed and possesses a unique solution

UE€HQ(Ü,). Our purpose is to study the asymptotic behaviour of
uz as e becomes small.

2. ASYMPTOTIC EXPANSIONS

It is know ([6] chap. VI. 14) that in the distributional sensé fe has an
expansion, of the form

(2.1) Ij f(y)dy\

yaf(y)dy) aa
I
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406 C. LEAL

This suggests to look for an asymptotic expansion of the solution of the
form

(2.2) u£ = ixjÇe) u\x) 4- e2 u2 (x) + e3 u\x) + • - -

where ^ ( e ) is unknown at this stage.
Substituting (2.2) into (1.1)-(1.2) we obtain for u1

from which ul =
Consequently,

For i = 2, we

(2.3)

(2.4)

0.
expansion

8

have

u2=0

w =

(2.2)

2u2 +

on

u = 0 in
: 0 on aft

is really

e3w3(;c)

f(y)d
D

en.

of

+ •

a

the form

S in ft

Let E2 = (2 7r)~1log |JC| be the fundamental solution for Laplace's
operator in IR2. Then, the solution of (2.3)-(2.4) is of the form

where w2
eg is the unique solution, regular at the origin, of the following

problem,

(2.5) - Au = 0 in ft

(2.6) u = -c'E2 on aft

with c' = - f(y)dy.
JD

For i = 3, we have, taking into account that — A daE
2 = 8a8,

(2.7) - A W
3 = : - 2; ('f y a / (y)<*y) a.» in ft=: - 2; ('f

| a | =1 \ ^ ö

(2.8) w3 - 0 on 3ft 5

whose solution is of the form

= w3
ing + w3

eg
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CONCENTRATED FORCES, ASYMPTOTIC STUDY 407

where

(I yaf(y)dy
D

and where w3
ing is the unique solution, regular at the origin, of

J-Aw = 0 in n
[u = - w3

ing on BH .

More generally, ul
sïng is

(2.9)

| c , | = i - 2

We see the Dirac distribution, at the origin, together with its dérivâtes,
showing up. Expansion (2.2) will be called the outer expansion and will be
valid in n \ (0 ) .

Let us remark that in n \ ( 0 ) , Wsing has the form

(2 10) ul' = \x\~2^ ~2^ P • (x x )

where Pk is an homogeneous polynôme of degree X.
In polar coordinates ( | ; t | , 9 ) , (x1 = \x\ cos 0 , x2= \x\ sinO), (2.10)

takes the form :

As in [7], in the sequel, we shall write this expression as

(2.11) « 4 , = «•"•-<j-2> ( e ) |* |-<«'-2>

Since (2.2) is singular at the origin, we now look for another expansion
valid on its neighbourhood (inner expansion). We shall perforai their
matching (see Eckhaus [2]), afterwards.

In order to study the behaviour in the neighbourhood of the origin we
consider another variable, y = x/z, called the inner variable, and we seek
for an inner expansion of the form

(2.12) uz = ^(s) v^y) + e2 V2(y) + e3 v\y) + . . . .

Performing in (1.1)-(1.2) the change of variable y = x/e we get

(2.13) - Ayu
£ - e2 f(y) in D

vol. 24, n° 3, 1990



408 C. LEAL

(2.14) . - A / = ö in

(2.15) [ | « e | ] = 0 ; [|3„we|] = 0 on T

(2.16) we = 0 on 3 (e"1 i l ) .

Substituting (2.12) into (2.13)-(2.16) we obtain, for i # 2 ,

(2.17) -At?' = 0 in IR2.

For i = 2, we have

(2.18) -Av2=f in D
(2.19) - Av2 = 0 in R 2 \ D
(2.20) [|t?2|] = 0 ; [|a„u2 |] = 0 on I \

3. MATCHING

In the previous section we saw that all the terms of the outer expansion
may be evaluated. For the inner expansion we just established the équations
the terms should satisfy.

We remark that some terms of the inner expansion will be completly
determined by matching.

We shall use the technique of the intermediate variable which has already
been used in [7].

The outer expansion cöntains both singular and regular terms. The
singularities are in log \x | and in |x \ ~p, p ;> 0. The regular terms behave as
\x\q, q > 0, at the origin. Consequentïy, in order to perform the matching,
the inner expansion may be "singular" at infinity, with terms in log \y\ and
in \y\m ( m > 0 ) .

Therefore, we are going to look for vl of the form

where, for \y\ sufficiently large, vl
s{ng and i?'reg are given by

(3-2) i ; ^ = ^ !>••

and

(3-3) o'reg =
k = — oo

We shall write now ul(x) for \x\ small.
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CONCENTRATED FORCES, ASYMPTOTIC STUDY 409

As ul
rcg is a C00 function in the neighbourhood of the origin, we may use its

Taylor expansion for |JC| small.
Taking into account the homogeneous terms we obtain

(3.4) t 4 g = + f uitk(B)\x\ *, Ï3» 2, |JC| small.

Considering the singular part of u', (2.9) and (2.10), we may write

(3.5) u2 = clog |x | +

(3.6) « '= +f «'

where the sum has at most one négative term not identically zero.
Let us now introducé the new variable z defined by

z = JC8-p; Z ^ V E 1 - * 5 , 0 < p < l .

This intermediate variable rule is based on the principle that the two
expansions have to coincide in a région where \z\ = 0 ( l ) ( i . e . |JC | small and
|v | large). By considering the outer and inner expansions in the variable z
we obtain, respectively

(3.7) u£ = e2 clog |ze p | 4- +Y

= CPlOg E£2 + E2 Clog | z | + £ £ w''*(6) \z\k B^k + i

i = 2 k = - oo

and

(3.8) w e = u(zE p - 1 ) | X 1 ( E ) + £ (c'log | z | e1* + (p - 1) c1" log EE1')
i = 2

i = 2 k = - oo

Identifying (3.7) and (3.8) we see that

(3.9) c' = 0 for / # 2
(3.10) c2 = c .

vol. 24, n° 3, 1990



410 C. LEAL

Then choosing
^ ( e ) = E2 log e ,

we obtain by identifying the coefficients of the term e2 log e,

+ 00 +00
Mi>k(C\\\r\kIt only remains to identify £ £ uitk(B)\z\k sH + i and

i - 2 k = ~ oo

Z Z k l * e p * - A : + I' for all \ z \ 9 9 and E.
(" = 2 Jfc = - oo

Identifying the coefficients of the terms with the same powers of
\z\ and E we obtain

(3.11) ui'k(Q) = v i + k - k ( Q ) .

Remark 3.1 : The regular part of vl, denoted by vl
TCg9 is reduced to a

constant except for / = 2 . In this case we have

(3.12) vl&= l «2-*-*(e) |y|*. •

Jk = - 0 0

Remark 3.2 : The singular part of vl (/ > 2 )

(3.13) »i ing = M ' - 1 - 1 ( e ) | y | + M - 2 > 2 ( e ) | ^ | 2 + . . . + u 2 ' ^ 2 2

is a solution of — Aw = 0 in IR2, because

is a solution of - AM = 0 in {x : 0 <= \x\ < v } . As each term of ul is
homogeneous of order k, Aw is a sum of homogeneous functions of order
k-2. We shall then have - A(w''*(e)|jt |*) = 0 in {x : 0 <: |* | < v) and of
course, - A ( M ' " ^ ( 0 ) | ^ | * ) - 0 in U2 for k > 0. •

Conclusion : For ƒ > 2, the matching gives

(3.14) ^ - < g ( 0 ) + w ' - M

which is a solution of - Aw = 0 in R2 from which we conclude that (2.17)
holds.

On the other hand, for i = 2, the matching gives Ü2 but only for
sufficiently large y,

(3.15) t;2 = clog |y | + w2
eg(0) 4- ^ M2-*-fc(e)|y|* , ( | y | large) .
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CONCENTRATED FORCES, ASYMPTOTIC STUDY 411

This expression is not valid at the origin, consequently we have to find
v2, solution of (2.18)-(2.20), with the form (3.15), for sufficiently large y.

4. CALCULATION OF v2

We are going to define v2 as a solution of a variational problem.
As the singular part of v2 (at infinity) behaves like c log | y | , we are going

to look for v2 in the form

(4.1) v2 = \v i n D

Ulog \y\ +w(y) in U2\D ,

where w(v) is regular at infinity, that is, w(y) -• Cst. for \y\ -• + oo.
Substituting (4.1) into (2.18)-(2.20) we obtain

(4.2) - Av = f in D

(4.3) -Aw = 0 in R2/D
(4.4) v+ = ( c l o g \y\ + w)_ ; dnv+ = 3 „ ( c l o g \y\ + w)_ su r Y

(4.5) H>(y ) ->c * , for | y | _ f + oo.

Denoting by cp a given function in Hm(T), let us consider the following
problem

(4.6) -Aw = 0 in R2\D
(4.7) w = (p on F
(4.8) wOv)^c* , for |y| -» + oo

where constant c* is related to the solution fo Laplace's équation, in an
outer domain, using Kelvin's transformations.

Let w9 be the solution of (4.6)-(4.8) and

Tcp = - bnw* ,

then we have

THEOREM 4.1 : Problem (4.2)-(4.5) has the following variational formu-
lation : find v e Hl(D) such that :

(4.9)
JD

- f 3„(clog|y|)| rz| rdr= [ fzdy, VzeH\D).
JT JD

vol. 24, n 3, 1990



412 C. LE AL

Which may be written in the form

(4.10) a(u,z) = F ( z ) , V

with

a(v,z)= | aiv9lzdy+ (T(v\T),z\T) M

F{z) = f /z^+ f
JD Jr

As X = 0 is an eigenvalue of a{•• , . ) ([6] Chap. IV.8), problem (4.10) will
have a solution iff

(4.11) F(z) = 0, Vze <0> ,

where <(0) dénotes the eigenspace associated to the eigenvalue \ = 0, and
whose éléments are constant functions.

From the définition of c we see that (4.11) holds.
Applying Theorem 1 of [3], bearing in mind (2.1) and the expression of

wsing w e s e e t i i a t v2 has the form (3.15).

5. CONVERGENCE

According to Van Dyke [9], there are situations in which it is possible to
define an asymptotic expansion valid in the whole H, called the composite
expansion.

Let us assume that it is possible to define "corrector function"
h1 in such a way that

(5.1) u*=e2[c log 1*1 +«Êg(x) + a2(x/e)] +

is an asymptotic expansion of the solution of (1.1)-(1.2) in the whole H.
That is, we assume that it is possible to correct the outer expansion in such a
way that one obtains an expansion valid for all x in £1.

By définition of inner expansion we calculate functions hl and justify (5.1)
by convergence results.

By définition of inner expansion function v2(y) is given by

2/ \ • i- uz(x) - es2 log E ,. wE(ey) - ce2 log eir(y) = mner hm — ^ — ^— = hm — ^ - ^ — £— .
e2 e^o e2
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CONCENTRATED FORCES, ASYMPTOTIC STUDY 413

Using for uE expression (5.1) and hearing in mind that

we obtain

= v2(y)-clog \y\ -M r
2

eg(0)- £ 4 n g (y)

Substituting h2(x/e) into (5.1) we find

As

i>3 i*3

we get

(5.2) wE = e2[ulg(x) + v2(x/e) + c log E - W?eg(0)] +

Following the same process, once again, we have

v3(y) = lim ——
e - , 0 e 3

y fixed

which becomes, taking into account (5.2),

e-»0
y fixed

Considering now the Taylor expansion of u%g, at the origin, we have

| a | =1

\

From (3.14) we get /i3(y) = 0. Going on with this process we obtain
hl(y) = 0 for i ^ 3. We then have

(5.3) ae = e2[uië(x) + »2(x/e) + c log e - *4g(0)] + s3 u%g(x) + . . . .
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Remark 5.1 : Relation (4.1) shows that the behaviour of v2(y), at the
origin, is not logarithmic. Consequently function (5.3) is defined for all x in
fi. As v2 is a solution of - Au = ƒ in D, with ƒ e L2(D), we know ([1] page
336) that v2 is continuous. Thus we may define its value at the origin. •

Let now

(5.4) z|(x) = uig(x) + v2(x/s) + c log E - *4g(0)

(5.5) *f(*) = < ( * ) , *'^3

and we be the unique solution of (1.1)-(1.2), we then have

LEMMA 5.1 :

(i) ue -• 0 if1

(ii)e"1 UB -+ 0

; (i) From (1.1)-(1.2) we get

- f Aueuedx= | f£uedx

from which we obtain
1/2

/ f
— e /

• xf( M 2 J y* Ni e||
Cl f

that is

Using Poincaré's inequality it foUows that

(5-6) | | « l f f l ( n ) « c 2 e .

(ii) We may then extract a subsequence of s" l ue, denoted by ve such that

(5.7) ue -> t>*

Let w be an arbitrary function in <3(Çl), then from (1.1)-(1.2) we have

3,-i?* 3 ^ * = e " 1 fewdx.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



CONCENTRATED FORCES, ASYMPTOTIC STUDY 415

Passing to the limit, as e -• 0, and hearing in mind (5.7), we obtain for the
first member

i tv* dtwdx.

Performing the change of variable y = x/z (using the Taylor expansion of
w e 2 (ft), at the origin), we see that the second member converges to zero.

By virtue of the density of ^(ü>) in HQ(D.) we obtain

Ja

from which we conclude that v * = 0.

THEOREM 5.1 : For p = 1, 2, ...

wl= ^
def £ P + e _» 0

0 H\n) - strong .

Proof: This is an immédiate conséquence of [5] remark 7.2 and of the
following Lemma :

LEMMA 5.2 : For p = 1,2, ... w*p vérifies

- Aw* = 0 in n

^ -* 0, 7/1/2(aa) - 5rrc?wg, /or e - 0.

Proof: We have

- Aw; = e" <P + 1) f£(x) + e2" ̂  + 1} Az2
E(*)

From the définition of fE(x) we conclude that - Awj = 0.
On the boundary we obtain

i = 3

vol. 24, na 3, 1990
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As for x G aft and s sufficiently small, x/e is large, we get

P 2 (VO = 4g (0 ) + clog \x/e\ + £ ma

On the other hand

^ l e n = - «îinglaft = " I ™« 9 « ( l ° g k l ) | x 6 a o

Therefore,

wEl - - V m
| « | ^ p def.

Let us now proof that gE
p -• 0? /f1/2(3fl) - strong, for e -+ 0.

We are going to construct a function <E>£ G f / ^d ) verifying :

For a > 0, let

üa(3ft) = {x G ft : dist (je, aft) < a} .

We consider p(x) G C°°(ft) such that 0 ^ p(x) ^ 1 and

fl , for JCG V5 /2(aft)
9{X)^ J O , for x

If 8 and e are sufficiently small andx G Vs(dft) thenx/e is large. From [3]
page 80 we see that we may define the up~l at point x/e, Denoting it by
<p£ we have

with

K|=O(e");

Let us consider

which is well defined, and show that it vérifies 1, and 2.
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2. f |3,*;|2d*=. f |3,
Ja h()

* [f \W\2dx + C f
L»/v6(3n) . J

The last inequality is a conséquence of 0 =s p(x) =s 1 and of 13,-p |2 =s c,
xe V8(an). As |<p;| and \d^\ are O (e') we have

Ja

From which we conclude that

f i .2
| dföp I dx -> 0 , for e -+ 0 .

Ja

We also obtain

f • ,2 f . 1 - .2
| <ï>̂  | d x ^ I <pe

p (x) e1 p | dx - • 0 , f o r e - • 0 .
Ja Jy6(an)

Thus, we see that

Finally, the result follows from the définition of || . \\Hu2,day

6. GENERALIZATIONS

The previous techniques may be applied to other problems. In this section
we give some examples and a gênerai idea of the calculations.

Example 1 : We consider the same problem as in (1.1)-(1.2) but with the
force / £ defined by

(6 1) ƒ«(*)- {/(*A)e-m> for xeeD
yp.1) / W " l * ( x ) , for xteD, m e Z ,

vol. 24, n 3, 1990



418 C. LEAL

where ƒ and O are given functions belonging to L2(D) and L2(Cl)
respectively. We suppose that <E> is defined at the origin and that it is of class
C00 in its neighbourhood.

We consider the following décomposition of f£

with

and

T(x/e) e m , for x e eD
, for x £ eZ) ,

[(^f^1) for je G £Z)
^X' lO , for x£ eD .

From the previous example we see that it suffices to study the behaviour
of the solution of

Aue = <ï>8 in n
we = 0 on dft

as e -• 0.
For this purpose we consider the "moment" expansion of <3>e

(6.1) *(0) dy 8e2 + • • • +
*1 D LJD*J\CL\=Q

x E (•
i p i = « - I « I

which is established in the same way as (2.1).
We can see from (6.1) that in this case all the terms of the outer expansion

have a logarithmic term. This is only différence between this case and the
previous one.

Example 2 : (Linear elasticity-isotropic homogeneous case)
Let aV]mn be the elasticity coefficients in the isotropic case denoting the

Lamé constants by X and \x, they are of the form,

CL' '™ = AÖ-; O™ -h IX (ö* O; - f O;„ O;„ ) .
ijtnn ij tnn • • \ im jn ' in jrn/

Denoting by etj and CT/;- the strain and the stress tensor components,
respectively, and by u this displacement vector, we have

eu(u) - l/2(a;-K, + dp;) ; crl7(«) = aijmn emn{u) .
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We consider the elasticity system

= f in

ue = o on an

where

p r , f(/i(*A)> Mx/s)), for xesD
- ^ J 1(0,0) for x$ EZ>,

and /x, / 2 are given functions of L2{D).
For fixed e problem (6.2) is well posed problem possesses a unique

solution we. We are interested in the asymptotic behaviour of u£ as

From the fundamental solution of the elasticity operator in R2

i - i

( 2 \ + 2
-2(X

we obtain

with

where

Ui = Mfieg + Mfsing » ï = 1, 2

w"sing= I a«rj"Cf, (Cfest.) 1 = 1,2
= « - 2

and w"eg is the unique solution, regular at the origin, of

-3 /X I 7 (M) = 0 in H

w = — wfing on 3X1.

For the inner expansion we obtain

M* = e2 log eCoJöO, »J(y)) + e2(»ï(y), « I C » + B3(o?(y

where, for k ^=2, vk satisfies

-3 /WS*) ) = ° in R 2
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and where for k = 2,

(6.3) - 3yK-(e2)) = 0 in D

(6.4) - a,-(o*.(»2)) = 0 in IR\C>

(6.5) [\v2\] = 0; [|ay(22)n = 0 in I \

For k # 2, the t>*0>) are completely defined by matching. On the other
hand, in order to prove the existence of v2 satisfying the matching
conditions, together with (6.3)-(6.5), we look for v2 in the form

(6.6)

(6.7)

with

and

(6.8)

J\ =
vx(y) in D

v2(y) in D

2\D\D,

= 4.log

d/V= _ (4TT|X)-

(6.9) 1 f fi(y)dy
JD

" ƒ ' '
JD

I - J ,

(y)dy

i , ; e [1,2], and j ^ ; .
Functions ^ ( y ) , which will be defined later, are assumed to be regular at

infinity, in the sense that w e W(U2\D) ; the completion of @(R2\D) for
the norm

ij JU2\D
dy

(see Tchatat, H. [8]).
By substituting (6.6)-(6.7) into (6.3)-(6.5) we obtain

(6.10) - a j - K - C i W ^ / i in D

M2 AN Modélisation mathématique et Analyse numérique
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(6.11) - a ; K K , > v 2 ) ) = 0 in R2\D
(6.12) vi+ = (Zi + Wi), ; vij(vl,v2)nj+ = c r , ^ + w^, z2 +w2)ny . in
(6.13) wi regular at infinity .

We solve a problem in U2\D (see [8]) and we transform (6.10)-(6.13) i
a variational problem posed in D. Using (6.8)-(6.9) we show that (6.10)-
(6.13) has a solution of the form (6.8)-(6.9), unique up to a constant,
determined by matching.

We then proced as in the previous cases. •
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