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VIBRATIONS OF A FOLDED PLATE (*)

Hervé LE DRET (*)

Communicated by P. G. CIARLET

Abstract. — In this article, it is shown that the eigenvalues and eigenvector s o f the three-
dimensional linearized elasticity operator in a thin folded plate converge toward the eigenvalues
and eigenvectors of a limit 2d-2d model as the thickness o fthe plates tends to 0. The convergence
o f the associated stresses is also established.

Resumé. — On montre dans cet article que les valeurs propres et vecteurs propres de
l'opérateur de l'élasticité linéarisée tridimensionnelle dans un domaine en forme de plaque pliée
convergent vers les valeurs propres et vecteurs propres d'un modèle limite 2d-2d quand
l'épaisseur des plaques tend vers 0. On établit également que les contraintes qui leur sont associées
convergent.

0. INTRODUCTION

The purpose of this article is to dérive two-dimensional eigenvalue
problems that describe the limit behavior of the three-dimensional eigen-
value problem of linearized elasticity in thin folded plates when, the
thickness of the plates tends to 0. This is a question of interest since the
resuit provides a model for the f ree vibrations of folded plate structures.
This purpose is achieved by combining the techniques of Le Dret [10]-[ll]-
[12], which deal with the modeling of folded plates in the static case, with
the techniques of Ciarlet and Kesavan [4], who consider the limit eigenvalue
problem for a single plate. Both works contain a good part of the ingrédients
we need hère and we have thus felt free to refer to them rather extensively,
in order to keep the size of the article within reasonable bounds.
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502 H. LE DRET

Let us recall that the problem at hand is a special case of the more gênerai
problem of modeling and controlling elastic " multi-structures ", i.e.,
structures combining 3d-bodies with plates and rods that are held together
by appropriât e junctions. Significant progress in this area from the
mathematical viewpoint has recently been achieved for 3d-2d junctions in
the works of Ciarlet, Le Dret and Nzengwa [6]-[7] and Ciarlet and Le Dret
[5] in the static case and of Bourquin and Ciarlet [3] for the eigenvalue
problem. The resulting models give good numerical results, see Aufranc [2].
For 2d-2d junctions, i.e., folded plates, we have already mentioned Le Dret
[10]-[ll]-[12] who treat the static case. The case of ld-ld junctions
(junctions between rods) is also analyzed in the static case in Le Dret [13].

The central idea behind all these works is always the same. It consists in
scaling each part of the elastic structure independently of the others, in the
same way as is usually done for single plates or rods. These scalings must be
performed in such a way that the junction région between two parts is taken
into account in each of the scaled parts. The scaled displacements are then
defïned on separate domains, but satisfy some compatibility relations in
each of the scaled images of the junction région. Passing to the limit in these
relations yield the limit junction conditions.

To be more spécifie, we consider here the same standard folded plate as in
[11]-[12], i.e., an homogeneous isotropic linearly elastic body consisting of
two plates of thickness e perpendicular to each other (see [12] for more
gênerai geometries). The Lamé moduli of the materials are supposed to be
of the form e~2(|x, \) and the structures are assumed to be clamped on one
plate only. It is shown that the eigenvalues TIJ; of the three-dimensional
problem converge as e -> 0 toward the eigenvalues rQ of a well-posed 2d-2d
eigenvalue problem. Accordingly, the scaled eigenfunctions converge
toward eigenfunctions of the limit 2d-2d model. This model is as follows.
The limit eigenfunctions are of Kirchhoff-Love type in each plate with no in-
plane components. They are thus determined by pairs (£5', t>\") of
Zf2-functions of the in-plane variables of each plate (i.e., with the coordinate
convention assumed throughout, xls x3 and x^, x3 respectively) that
correspond to the flexural displacements of the plates. These displacements
are such that (assuming that $ ' is the displacement of the clamped plate and
denoting the fold by 7)

(i) £f " = 0 on 7 and g ' = - a(x3 - 1/2) + b on 7 with (a, b) e IR2, which
indicates a stiffening effect of the fold,

(ii) dï^>' = -92£f" on 7, i.e., the angle of the plates stays equal to
TT/2 during the vibrations of the structure.

These two relations, which we call limit junction conditions, détermine a
Hubert space "V* in which the limit eigenvalue problem is set. The limit
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VIBRATIONS OF A FOLDED PLATE 503

eigenvalues are characterized as min-max of Rayleigh quotients over the
usual sets. The numerator of the Rayleigh quotient is the sum of the usual
elastic énergies of each plate and the denominator is the sum of the
L2-norms of the test-functions (£', £") e i^ plus an extra term of the form

l )2> where a(£'), b(g') dénote the constants a and b of (i) for
12 v" '
an arbitrary element (£', £") of i^. This extra term represents the
contribution of the overall rigid motion of the f ree plate, which folio ws the
rigid motion of the fold, to the limit eigenvalue problem. The particular
factors 5/12 and 1 are due to the spécifie square shape of the plates we
consider here.

In addition, a very simple and gênerai proof of convergence of the scaled
stresses is given. This proof extends that of Destuynder [9]. It is shown that
the scaled stresses <xafi(e), aa3(e) and cr33(8) (with the standard index
convention, not used in this article) converge respectively in the spaces
L2(Ci), H\0,1 ; / /^(eo)) and H\0,1 ; H~2(^)) (again with standard
notation) in the strong sensé, toward the limits that are usually found by
asymptotic expansions. Note that we do not use such asymptotic expansions
here and that the proof s are direct.

NOTATION

Let Ci be an open subset of Un and let m be a positive integer. We dénote
by

the space of C ̂ -functions with compact support in (î,
3'{Ci) the space of distributions on Ci,
L2(Ci) the space of (classes) of measurable square-integrable real

functions on fi,
Hm(&) the space of functions of L2(fi) whose distributional derivatives

up to the order m belong to L2(O),
#om<W the closure of 3(fï) in Hm{Cl),
H~m{Ci) the dual space of H$

More generally /fp(fl) is the space of Hm-functions whose traces vanish
on a part F of the boundary of Ci.

Finally, if X is a Hubert space, L2(0, 1 ; X) is the space of measurable

functions from ]0, 1[ into X such that | |w (0 | | ^^ < + °°> an<3
Jo

Hm(0, 1 ; X) is the space of functions of L2(0, 1 ; X) such that ail their
distributional derivatives with respect to t up to the order m belong to
L 2 (0 , l ;X) .

We refer to [1], [14] and [15] for the gênerai properties of these spaces.
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504 H. LE DRET

1. THE THREE-DIMENSIONAL PROBLEM

We consider the standard eigenvalue problem of three-dimensional
linearized elasticity for domains that model thin folded plates in the sensé of
[11], [12]. Let us briefly review the notation which is the same as in those
two papers. The référence configurations of the elastic bodies under
considération are the sets fle, defined for e > 0 as

def

ae = n; u a; ,
where :

def

n ^ = [x G IR3 ; 0 < ^ 1 , x 3 < l ,0<:X2<: e} ,
def

VL';= {xe U3 ;0<=jc2 ,JC3<:l,0<x1<e} .

The bodies are made of homogeneous elastic materials that depend on 8 in
the following way. We assume that the Lamé moduli (|xE, Xe) of the bodies
are of the form

(M.8,*E) = e-20x,X) (1.1)

with |x, \ : > 0 and independent of s. The spécifie choice (1.1) does not
restrict the generality of our results. Indeed, the results corresponding to
any other choice (including (|JL8, XS) independent of e as in [4]) may be
deduced from the results given hère via an appropriate rescaling, The
reason for assuming (1.1) lies in the fact that, in this case, the eigenvalues of
the 3<i-problem turn out to converge to the eigenvalues of the 2d-2d model
as s -• 0 without rescaling (compare with the eigenvalues of the order
e2 in [4]). From the viewpoint of mechanics, (1.1) is an assumption on the
rigidity of the materials, i.e., the materials are assumed to become more and
more rigid as the thickness of the plates goes to 0, with the spécifie order
s~ 2 indicated in (1.1). This assumption is thus the only one that yields such a
limit behavior for the eigenvalues and we find it more agreeable to work
with, instead of with any other (mathematically) equivalent assumption.

We also assume that the boundary conditions are as in [12], i.e., clamping
u — 0 on Tg and the rest of the boundary 3HE\r^ is traction-free, where

def def

r^= n^n {^ = 1} , 17= ü;n {*2 = i}

(the simpler case when clamping holds on parts of both plates, e.g. also, on
r ; is left to the reader).
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The eigenvalue problem for the folded plates under considération consists
in finding pairs of scalars rf and nonzero displacement fields ue satisfying the
following set of partial differential équations:

- div ae = uz in
in

in (1.2)

= o on

where <xe is the stress tensor, e{uz) is the linearized strain tensor correspond-
ing to the displacement ue, (diva), = a;a.; for any tensor field a and
nz is the outer unit normal vector to 8 i \ which is defined almost everywhere
on aHE.

The mechanical motivation for problem (1.2) cornes from linearized
elastodynamics. In elastodynamics, the response w£(x, t) of the structures
He under the action of body force densities fz(x, t) and surface tractions
gs(x,t) is governed by the équations

ar
, 0 , 0 i

uz{x, 0 = o on r ; , (1.3)

on

plus appropriate initial data for ue and — at t = 0 ,

where pe is the density of the folded plates. If we look for stationary solutions
to (1.3) under zero loading, Le., solutions of the special form
u£(x, t) = ue(x) eio>z\ then, clearly, the pair (pE(coe)2, uB(x)) is a solution of
the eigenvalue problem (1.2) and vice versa. Thus, solving problem (1.2) is
equivalent to finding the free vibration modes uz of the structures and the

,. , . 1 lîf
correspondmg proper frequenaes -— /— .

2 ir Y Pe
Problem (1.2) f ails within the classical framework of abstract spectral

theory for self-adjoint compact operators. Let us introducé the relevant
spaces

Then it is well-known, see e.g. [16], that, for all e :> 0 fixed, the eigenvalues

vol. 24, n° 4, 1990



506 H. LE DRET

are arranged in an increasing séquence

0 *=: T|J ^ T|2 ̂  ... ^ T|̂  ^ ... (1-5)

with T^-^ + OO as p -• + oo, and that the corresponding eigenvectors
ue'p (normalized in H8) form an hilbertian orthonormal basis of H8 and also
an hilbertian orthogonal basis of V8 equipped with the inner product

<r*(e(uE)):e(v*)dx.f
As in [4], we will make an essential use of the following variational

characterization of the eigenvalues. First of all, for any e > 0 w e define the
Rayleigh quotient

def ƒ v*(e(v*)):e(v*)dx
R£(v*) = —— for all v* e V8\ {0} . (1.6)

f v'.v'dx

Then we have

r\p = min max Re(ve) , (1.7)
Ep eif*pv

Ee Ep

where Wp is the set of all vector subspaces of V£ of dimension
p, see e.g. [8] or [16]. Moreover, we will use the following variational
characterization of the eigenvectors:

u*>P.v*dx (1.8)

for ail ve e Ve. For our purposes here, it will be convenient to normalize the
eigenvectors according to

(1.9)

2. RESCALING THE STRUCTURE

The rescaling we use here is exactly the same as in [11], [12]. We will thus
only briefly describe it. First of all, we introducé two copies of R3, which we
call (U3)' and (IR3)" (to be shortly identified to one another), and two
rescaled plates independent of e
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def

H' = {x e
def

H" = {x G

(2.1)

We only need to define the primed object s, since their double-primed
counterparts are defined by similar expressions, up to a switching of the
indices 1 and 2. Define thus

r = H' n {xx = ' = ft' n {x2 = o } , jf
e = a' n

(2.2)

We introducé a scaling mapping cf>e

c|>e : ft' U ft" -• fte

[(*!, £x2,x3) if x e ft' ,
(sx1 ?x2 ïx3) if XG ft" . (2.3)

Note this crucial property of <$>e which is that 4>e takes the junction région
into account twice, once in J'E and another time in /"• Let

def

V =

and

0 e : Ve ^ V
v ^ ( 2> s " % (üj, e - J v2, s~l v3) o

(2.4)

(2.5)

The scaling operator 0 e is not onto. Its range, 0S Ve consists exactly of those
pairs (v', v") in V that satisfy the fundamental relations

ü{(ejcl9 x29 x3) = uf(xl5 sx2, x3) ,
v2(sx{, x2, x3) = et?2 0q9 sx2, x3) ,

b x2, JC3) = ü^(xb ex2, x3) ,
(2.6)

for almost all (x l5x2, x3) in ]0, 1[3. Then with any eigenfunction ue'p, we
associate a rescaled eigenfunction up{z) G 0 e V£ by

UP(E) = 0e u^p . (2.7)

For brevity, we also set V(e) = 0 e Ve. As in [11]-[12]5 we then introducé
two quadratic forms

vol. 24, n° 4, 1990
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def

B'z(u, v ) = 2 fu?«'P'(«') ea.p(v') + Xeaïa,(M'

+ E = 4 ( 2 fju + X) e jz (M' ) e22(i>') , (2.8)

and B"(u,v) as explained above. Then, if we perform the change of
variables (2.3), (2.5) in the intégrais, formulas (1.6), (1.7), (1.8) and (1.9)
become respectively

*e(t>(e))= f B't(V(e),v'(z))dx+ f B;{V(B),V(E))dxl
JCL' J f i " \ J" ƒ

(2.9)

f (!>J(e)»J(e) + e2p;.(e)»;.(e))flbc+ f (»r(6) »f(e) + e2i>;.(8) »;.(e))dx
Jn' Jrr\ Ĵ

TI^= min max R*(V(G)) , (2.10)
^ ^ t)(e)^O

where T^p(e) is the set of all vector subspaces of V(e) of dimension

f (2.11)
'̂ J

for ail u(e) in V(e), and

f (M2'(e)«f(e) + e2
M»'((e)

+ f («r(e)«r( = ö „ . (2.12)

Finally, we recall the following version of Korn's inequality whose proof
may be found in [12]. Let yE = (1/2, e/2, 1/2). For all Ü in Hl(tl"Y, we

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



VIBRATIONS OF A FOLDED PLATE 509

dénote by W(v) = (Vu - VvT)/2 the skew-symmetric part of the gradient of
v. Let a(v) be the vector of f53 associated with the skew-symmetric matrix

( W(v)dx and b(v) = \ vdx+[\ W(v) dx) ( \ (x-yE)dx).
Ja" Ja" \ Jrr } \ Jo" /

Then we have

LEMMA 2.1 : There exists a constant C > 0 independent of z such that, if
we set

v{x) = v(x)- a(v) A(x-y*)-b(v), (2.13)

then

^C\\v\\H,(a„f. (2.14)

3. THE LIMIT PROBLEM

We follow the scheme of the proof of Theorem 1 in [4], namely, we first
prove that the various unknowns involved (T^, UP(B)) satisfy appropriate
bounds, which, upon extraction of a subsequence, will allow us to consider
limits for these unknowns as e -> 0. Then, we will identify limit 2d-2d
problems for the limit unknowns by using the techniques of [11]-[12]. As
these limit problems will turn out to be well-posed eigenvalue problems, we
will then be able to détermine precisely the limit unknowns as being the
eigenvalues and eigenvectors of the limit problems. This will show that the
whole family (T^, UP(Z)) converge.

To begin with, let us consider the eigenvalues T ;̂.

LEMMA 3.1. For any integerp s= 1, there exists a constant y\* independent
of e such that

^ ^ T,;. (3.i)

Proof: Let us rewrite the Rayleigh quotient (2.9) as

For s <: 1/2, let W be the subspace of V ( E ) of functions (v',v") such that
v" = 0, v'(x) = 0 for jCi ̂  1/2 and

v'(x) = ( - (x2 - 1/2) d^(pcl9 x3), g(x!, x3), - (x2 - 1/2) b3i(xl9 x3))

for xx ^ 1/2, with g e H2(oy). Let Wp be the set of all vector subspaces of W
of dimension p. Then, as Wp c Wp(^) for E <: 1/2, we see that

vol. 24, n°4s 1990



510 H. LE DRET

t\**s* min maxR*(v). (3.2)
E

Now, for D in W, we have

AT 0 0 0 0 = I (2^« 'P ' (ü)^p r (v) + Xca,a.(ü)^p.(ü))dx, (3.3)
Ja1

so that, N(s)(v) = iV(£) does not depend on e. Moreover,

def

Ç2 due, rfx3= / > « ) - (3-4)

It follows immediately from (3.2)-(3.4) that:

^ min max i^g = -n;, (3.5)
v ^ O

and the proof is complete. D
Let us now consider the eigenfunctions.

LEMMA 3.2 : For any integerp === 1, letüp"(e), a(up"(e)) andb(up"(e)) be
associated with UP"(B) by Lemma 2.1. There exists a constant Cp>0
independent of E suc h that

Proof: Let i?(e) = up(e) in équation (2.11). Then, by formula (2.12), we
obtain

\
Jn

= T\l. (3.8)

By Lemma 3.1, the right-hand side of équation (3.8) is bounded from above
by ri^. As in [11], we may rewrite the left-hand side as

f B't(u"(B)9 up'(s)) dx + \ \ Bf
E(up'(s), up'(s)) dx +

Ja'\ fB
 z Jy;

f 58
ff(i?ff(e),i?B(E))£& + i f

Jo"\ ^ z J^
(3.9)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
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and as s <: 1, it follows that

from which the bounds (3.6) follow, by Lemma 2.1. Then we apply
estimâtes (1.3.10), (1.3.12) and (1.3.19) of [12], proof of Proposition 1.3.1,
to conclude the proof of Lemma 3.2. Let us simply mention hère that these
estimâtes rely crucially upon the compatibility relations (2.6). •

We may therefore extract a subsequence e„ (which can be chosen to be
the same for ail p, by use of the diagonal procedure) such that

LEMMA 3.3 : For ail p s= 1, we have

ti;--<, (3.11)

(upt(Bn)9 ûp"(£n)) -+ (up'(0), üp"(0)) weakly in V , (3.12)

ba,(u
p"(sn)) - b$ , snb2(u

pn(Bn)) -> 55° . (3.14)

Remarks : In the sequel, we will omit the subscript n for the sake of
brevity. As in [12], we may as well incorporate the component s of the rigid
displacement that converge into üp"(s), thus defming

ïïp"(e)(x) = ûp"(e)(x) +

- 1/2) - a3(u
p"(s))(x2 - s/2) + bx{up'\z]

(^ - 1/2) | , (3.15)

- l / 2 ) + 63(^"(e))

so that

. (3.16)

The interprétation of formula (3.16) is the same as in the static case of
[12], Namely, if we «descale» équation (3.16) and restrict it to the mid-
plane of the free plate, we see that uz'p in this plate consists of a flexural
displacement that converges toward wf"(0) and of in-plane displacements
that converge toward a rigid displacement (0, - â?0(x3 - 1/2) + bf, ôf° x2).
As the eigenvectors correspond to vibration modes for the whole structure,
it follows that these modes comprise a vertical rigid motion o f the free plate
which, as we will show in the next lemma, is equal to the motion of the edge
of the clamped plate at the fold, cf. formula (3.20) below.

vol. 24, n° 4, 1990



512 H. LE DRET

We next state without proof the following properties of up(Q). The
proofs for the various formulas in Lemma 3.4 can be found in [11] and [12].
Although they were written for the static case, it is clear that they apply
equally well hère.

LEMMA 3,4: For each p~*l, the limit displacements upi(0) and
ÏÏP"(O) are of Kirchhoff-Love type, that is, there exist six functions
t%, e H\o>f), tfj e Hl(tù"), t&' e #2<V) and ip" e i/2(a>") such that

u?f(0)(x) =

and

ÏÏ""(0Kx) =

(xu x3) - (x2 -
i, x3) - (x2 - 1/2)

, W'{x2, x3) -

- 1/2) 93Ç

l9 x3)) ,

- 1/2)

iViXi, x3) - (

These functions satisfy the boundary condition

Cf'(l,x3) = 3it5'(U*3)

and the junction conditions

tf"(0, x3) = Q,

Moreover,

-1^'2(^'(8))-0

e-2e22K'(e))

(3.18)

(3.19)

weaklyinL2(fl'), (3.21)

^ 1 V i ( w p " ( e ) ) - O

s-2en(üp»(e))
2 |x -f X

Some of these functions actually vanish. In fact,

LEMMA 3.5 : We have

Î « £ 2 ( O " ) . (3.22)

(3.23)
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Proof : It follows from formulas (2.13) and (3.15) that

iïp
2"(E)dx = 0 , (3.24)

from which we deduce that

Zp
2"(x2,x3)dx2dx3 = 0. (3.25)

Furthermore, we get from the same formulas

W(ÏÏp"(s))dx= l a3(u
p"(B)) 0 0 | , (3.26)

\-a2(u
pf'(e)) 0 0

so that

dx3 = | ^sH"(x2, x3) dx2 dx3 =

X2) X3) — ̂ 2^3 V*̂ 2? " ^ 3 / / dX2 uX3 = U . yD.2* /)

Now, if we defme two-dimensional displacements on o>' and o>" by

[-" = ( « ' . Cl') in » ' ,

then, the same proof as in [11], Theorem 3.3, or as in [4], Proposition 2,
Step 3, shows that these displacements satisfy

J dx

(2 (Juvp-K") <vr(u'") + j l » ^ - «„.„. (u"") e r r(u'") ) rfx = 0 .

(3.29)

Therefore, ^-p-Cu^") = 0 in o>' and ea-r(u
p") = 0 in co". As u7" obeys a

clamping condition on the left edge of the plate, it follows immediately that
up' = 0 . Furthermore, up" is of the form

( ) (3.30)
\ ax2 + b2 j

vol. 24, n° 4, 1990



514 H. LE DRET

The last junction condition in (3.20) implies that b2 = 0, équation (3.25) that
b{ = 0 and équation (3.27) that a = 0, and the lemma is proved. D

The weak limits of the eigenvectors are thus only determined by pairs
(£?'> Cf ) which belong to the space 1T defîned as

def

r ) e ^2(o>') x i^V'X 6' (1, *3) = 3tr (1, x3) =0,3(a,è)eR2

with Ç' (O, x3) = - a(x3 - 1/2) + b, r (O, x3) =

If we introducé the bending moments

E

" • • » • " " ~ 1 2 < I - " J > " " € + V i È (3.32)

*. -<«-üör7) [ ( 1 - ) l "- t ' + *4t"0"-1'
where £* = — — is the scaled Young modulus and v = — r-̂  is

Poisson's ratio, then we have :

THEOREM 3.1 : The limits Cl', Cf "

J w' Jw"

f
Ju"

f g'(0, x3) <&3 f C'(0,
Jo Jo

, (3.33)

/or a// ( Ê ' . D e i T .

Remark : The last two products may just as well be written as

^ €'). granted that a(C) and 6(Ç') dénote the

constants a and è in formula (3.31) for an element (£',£") of /ir. They
represent the contribution of the vertical rigid motion of the free plate to the
limit eigenvalue problem.

Proof : The proof is similar to the corresponding one in [11]-[12], and we
thus only sketch it. The idea is the foliowing: Given an arbitrary element
(Ç'? £" ) of if, approximate the corresponding Kirchhoff-Love displacement
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l(r', - (X! - 1/2) 82r, - (*i - 1/2) 83ê") in ftff ,

by a séquence of displacements v(e) that belong to V(e). This séquence is
constructed so that the functions e~2 e22(v'(s)), s"1 ea'2(v'(s)),
e"2 en(v"(E)) a n ( i E~1 ̂ a"i(ü"(8)) converge strongly in L1. Using these
spécifie functions v(s) as test-functions in the variational équations (2.11),
we can thus pass to the limit in their left-hand side, which gives the left-hand
side of équation (3.33). In effect, it is not possible to follow exactly the
above programme. In order that u(e) should satisfy the compatibüity
conditions (2.6) (and still keep the other properties listed above), it is
necessary that v"(e) be of the form

i?"(e) = (5f(e), e - ^ C O - (x3 - 1/2) a(g')] + 52"(B) ,

E-lx2a(£)+vï(s)) (3.35)

where it is Ü"(E) that actually approximates v". This does not change the
left-hand side, since only rigid displacements are added, but gives rise to the
right-hand side of équation (3.33), by formulas (3.13), (3.14), (3.16) and
(3.20). D

Remarks : The coefficients 5/12 and 1 of the last two terms are of course
not universal. They are related to the geometry of the free plate. For an
arbitrarily shaped plate co", we would have obtained

[ -1/2) dx + b (&) b(Ç) [ \dx. (3.36)

Thus, the first coefficient is the trace of the inertia tensor of the free plate
(with surface density 1) with respect to the center of the fold and the second
coefficient is the area of the free plate. In gênerai, these is also a cross-
product term with coefficient (x3 - 1/2) dx which has no influence on

the results given below.
The fact that (3.33) détermines the limit unknowns — i.e., that it is a well-

posed eigen value problem — is not completely obvious, especially in view of
its strong from. Let us set 7 = {(0, 0, x3) ; 0 < x3 <=: 1} .

COROLLARY 3.1 : Any solution to équation (3.33) satisfies, at least
formally, the following system :
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-1 /2 ) on y,

on 7 ,

f
J 7

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
[(x3 - 1/2) 3a.

plus the clamping and traction-free conditions on d<ù'\y, dv)"\y.

Proof: Equations (3.37), (3.40) and (3.41) follow easily from formai
intégrations by parts in équation (3.33). m

Remarks : Equations (3.37) are equivalent to the familiar plate eigenvalue
équations

(3.42)

although the boundary conditions are rather non standard. Problem (3.33)
is nevertheless a well-posed eigenvalue problem, as we now proceed to
show. The trick is to introducé the right function spaces. Let us thus define

= £2(o>') xI2(ü>") xi

with the norm

', È", a, b

(3.43)

(3.44)

It is clear that &f equipped with this norm is a Hubert space. We endow
V with its natural H2 topology. Then, the imbedding

T" ~* ̂  , , (3-45)
is obviously compact, and the following lemma is then just a straightforward
conséquence of the gênerai spectral theory, see e.g. [16].
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LEMMA 3.6 : Problem (3.33) is a well-posed eigenvalue problem whose
solutions (£", Ç*", "n/0 with g\ %"' normalized in #f are such that :

0 < Tij ^ Tri2 *£ • • • ^ i\p ^ • • • (3.46)

with t\p -• oo as p -> oos and the family (£*", ̂ pff) is an orthonormal basis of
3f and also an orthogonal basis of V equipped with the inner product
defined by the left-hand side of équation (3.33).

Proof : The only thing that remains to be proved is that the left-hand side
of équation (3.33) defines a coercive bilinear from on "V*. We refer the
reader to [12] for such a proof. D

The following lemma is quite obvious.

LEMMA 3.7 : We have

(ar, CD. a?', sr))jr = 8V • (3.47)

Proof : Pass to the limit in formula (2.12). D
Then, the same proof as in [4], Propositions 4 and 5, can be applied by

observing that only weak-V convergences are needed to complete it, thus
yielding the following theorem :

THEO REM 3.2 : The séquence t]p comprises all the eigenvalues of prob-
lem (3.33), i.e.y T|° = y\p (counting multiplicities) and the eigenvectors
(£%'> £?") forfn cm orthonormal basis of Jtf and an orthogonal basis of
V . Moreover, for any p 3= 1 fixed, the whole family (^)E >o converges to
T]O

p and, if r^p is a simple eigenvalue of problem (3.33), the family
(# ' ,£!") . ,o converges to ± (£", I " ) .

Applying the techniques of [13], we next show easily that
PROPOSITION 3.1 : (wp'(e), «'"(e)) -> (MP '(0)S ^"(0)) strongly in V as

Proof : See [13]. D
Remarks : It is a conséquence of the proof of Proposition 3.1 that the

weak L2-convergences of formulas (3.21) and (3.22) are in fact strong
L2-convergences. This fact will be used in Sectionc 4 to obtain the limits of
the stresses.

Theorems 3.1 and 3.2 give a complete description of the limit behavior of
the eigenvalues and eigenfunctions of the folded plates as e -*• 0, in terms of
the well-posed 2d-2d model (3.33). In view of Lemma 3.6, it is clear that the
limit eigenvalues also have the min-max characterization
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where iV'p is the set of all vector subspaces of
p, and R(i) is the Rayleigh quotient :

J<o' Jco" 1 2

of dimension

0.49)

4. CONVERGENCE OF THE STRESSES

In this section, we give a concise proof of the convergence of the scaled
stresses which also applies to the static case of [11]-[12]. Actually the same
proof provides an improvement of the resuit and a significant simplification
of the proof of Destuynder [9] for the case of a single plate. Let us thus
defîne the scaled stresses on Cl'

< V (E) = 2 M-«V,».(«"(e)) + X[ga.B,(ii"(8)) + e-2e22(»"(e))] Sa.p, ,

° £ ( e ) = ( 2 | i n ) B - 4 « 2 2 ( / ( 6 ) ) + k - 2
ê B , I . ( a ' ' ( e ) ) , (4.1)

and (^"(e) by analogous formulas on fl". These scaled stresses are related
to the actual stresses are'p in the original structures by the formulas

(4.2)

and their analogues on fi". The crucial property of the scaled stresses, which
stems from équations (2.11), is that

e2«f(e)

| in fi' ,- d i v e r s e ) =r\U

(4.3)

in ir ,

in the sense of H(div3 Cl') and i/(div, H"). Moreover,

V ' ( E ) « ' =0 on w',

ia^"(e)w" =0 on <o" ,

in the sense of / r 1 / 2 O ' ) and H~V2(o>").

(4.4)
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THEOREM 4.1 : The scaled stresses converge as e -> 0 according to

°£.V(e)-<V(0) stronglyin L2(Cî'),

C # 2 ( B ) - < 2 ( 0 ) stronglyin H l(0, I ; H'1^')) , (4.5)

O2(E)-» o£(0) stronglyin H '(0, 1 ; #-2(w')) ,

similarly on Cl", where

(4.6)

analogous formulas hold f or o£" (0).

Remarks : In Destuynder [9], it is shown that the convergence above hold
true in gênerai only in the strong L2(0, 1 j / f " 1 ^ ' ) ) sensé for the shear
components <v2(e) and in the strong L2(0, 1 ; H~2(co')) sensé for the
normal component cr22(e).

Proof: We can restrict ourselves to the plate £1', as the argument we use
is independent of the plate under considération (it is also independent of the
boundary conditions). First of all, the convergence of the components
o£'p'(e) is fairly clear, see the Remark below Proposition 3.1. Then, using
équation (4.3), we see that

- s2 (4.7)

and thus, cr^2(e) e Hl(09 1 ; H~l(oy')) (the distinguished variable hère is
*2). Now, e2 i\l upj(z) -+ 0 strongly in Z,2(H'), and a p ^ p ï ( e ) - V < p , ( 0 )
strongly in the space £2(0, 1 ; if"1 (» ')) . Therefore, since by équation
(4.4),

Jo
(4.8)

it follows that

Jo
stronglyin Hl(0, 1 ;

(4-9)
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The second équation in formula (4.6) is obtained by replacing cr£'p,(O) in
(4.9) by its expression in (4.6). Next, we have

a 2°£(O = - V < p , ( e ) - ^ Kf'(e) , (4.10)

so that <T%2 (e) e Hl(0, 1 ; //"2(co')) and again, thanks to (4.4),

. (4.11)

Now, TÎ  wf'(e) -> 7)° ($' strongly in / / !(O') and, by the preceding step,

3a'oi'«'(e) -> 3«-o!'a'(0) strongly in Z,2(0, 1 ; i / -2(w')) .

Thus,

P dt -
o

- *2 'njî C?' strongly in /^(O, 1 ; i/"2(co')) , (4.12)

and the last expression in formula (4.6) follows, since

X2 77 f X? XT

(4.13)
/o 2(1 - v 2 ) L 3 :

and since Ç|' satisfïes équation (3.42). D
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