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DIVERGENCE STABILITY IN CONNECTION WITH THE P-VERSION
OF THE FINITE ELEMENT METHOD (*)

S. JENSEN (1), M. VOGELIUS (®)

Communicated by R. ScotT

Dedicated to J. Douglas on the occasion of his 60th birthday.

Abstract. — Many problems in continuum mechanics involve an incompressibility condition,
usually in the form of a divergence constraint. The numerical discretization of such a constraint
presents some interesting problems with regard to stability. In this paper we analyze certain
stability properties, typical of high degree, conforming finite element approximations for
problems with a divergence constraint. The results in this paper complement the results already
published in [18] and [24].

Résumé. — De nombreux problémes en mécanique des milieux continus font appel & une
condition d’incompressibilité, le plus souvent sous forme d'une contrainte sur l'opérateur de
divergence. La discrétisation numérique d’une contrainte présente quelques problémes intéres-
sants en ce qui concerne la stabilité. Dans cet article nous analysons certaines des propriétés les
plus courantes qui découlent des approximations, par des méthodes d’éléments finis conformes
de degré élevé, dans le cadre de problémes soumis a cette contrainte sur l'opérateur de divergence.
Les résultats de cet article complétent les résultats déja publiés dans les références [18] et [24].

0. INTRODUCTION

Many problems in continuum mechanics involve an incompressibility
condition, usually in the form of a divergence constraint. The numerical
discretization of such a constraint presents some interesting problems with
regard to stability. As an important exemple we consider the two-dimen-
sional Stokes equations

—AU+VP =F inQcR?,
VU=0 inQ,

()
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738 S. JENSEN, M. VOGELIUS

with appropriate boundary conditions on 3. This has the standard weak
formulation
2 FindUe ¥ < [H(Q)]? and Pe # = L*Q) suchthat
a(U,v) +b(v,P)=(E,v) Vee?
b(U,q)=0 Vqe W .

The bilinear forms a and b are given by

a(U,v) =2 J Y e (U) &, (v) dx

Q.4

Q

and (F,v) denotes the usual [L3*(Q)})* inner product. The tensor

g;;(v) is the symmetric derivative % ( 2 v; + 2 v,-). The spaces ¥~ and

ox; 0x;

W depend on the boundary conditions. For no-slip boundary conditions :
¥V = [I;Il(().)]2 and ¥ = L*’(Q) N {J q= 0} ; for stress-free boundary
a

conditions : ¥~ = the orthogonal complement of {e; () =0} in [H'(Q)]
and # = L*(Q). A natural discretization of (2) consists in choosing finite
dimensional spaces ¥ 'y = ¥, Wy < # and determining

3) Uve ¥y and Pye€ # y suchthat
a(Uy, 2) +b(v, Py) = (E,v) Voe ¥y
b(Uy,q) =0 VNge W y.
The main obstacle in connection with (3) is to find spaces ¥, and
Wy so that the discretization is stable and at the same time has good

approximation properties. A reasonable requirement concerning stability
seems to be

@ |U-Unlgp+ 1P =Pyl 2=

=c( min -l min 12 -gl),
VE YV N ge Wy

with C independent of the dimension variable N. It is well known that the
Babus$ka-Brezzi condition
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DIVERGENCE STABILITY IN THE p-VERSION OF THE F.E.M. 739

V- vgdx

) min max —(—1——-——>c>0,
ge W N\ {0} ve¥y "2"”1"‘1"1}

with ¢ independent of N, is sufficient to guarantee (4) (cf. [2], [7]). If the
pressure spaces %y are chosen equal to V' ¥, then (5) is equivalent to the
requirement that the divergence operator

V' : ’V N — W N
has corresponding right inverses
(V)I_Vl : WN d VN >

that are uniformly bounded in #(L?; H'). In this case (5) is both a
necessary and sufficient condition that the quasi-optimality estimate

IV = Unll < C min [[U- 2],

ve ¥y

holds for arbitrary admissible force F (cf. [19]).

The most natural low degree finite element spaces often fail to satisfy the
Babuska-Brezzi condition, except on very special triangulations. A remedy
is to appropriately enlarge the velocity space or to deplete the pressure
space ; such approaches are analyzed for continuous piecewise linear
(bilinear) velocities with piecewise constant pressures in [6] and [12]
respectively. For continuous piecewise quadratic velocities one has the well
known Taylor-Hood element, with continuous piecewise linear pressures
(for the analysis leading to (5), see [4] and [22]). Enlarging the velocity
space or depleting the pressure space is also in general necessary for cubic
velocities and quadratic pressures (cf. [19]).

For continuous piecewise polynomial velocities of total degree < p, p =4,
the situation is quite different. For an arbitrary triangulation the range of
the divergence operator acting on the velocity space has a very simple
characterization — it consists of all piecewise polynomials of total degree
<p — 1, except for a certain constraint at so-called singular vertices (cf.
[18]). Furthermore, for fixed p =4, the divergence operator possesses
maximal right inverses, the norms of which are bounded independently of
the mesh size 4 (provided non-singular vertices do not degenerate). To
paraphrase : the condition (5) is satisfied for such velocities if the pressure
space, # y, is chosen to be V' ¥"). Using the analysis in [24] we were able to
prove that the same right inverses have %(L2; H') norms, which are
bounded by some power of p, for fixed A.

In this note we complement the results of [18] and [24]. We demonstrate

vol. 24, n° 6, 1990



740 S. JENSEN, M. VOGELIUS

with a few examples, theoretical as well as computational, that it is not in
general possible to find maximal right inverses for the divergence operator,
acting on entire polynomials, the norms of which are bounded in
B(L?*; HY, uniformly in p. We discuss both spaces of total and separate
degree = p, as well as spaces with and without boundary conditions.

The lack of uniformly bounded right inverses for the discrete case is
somewhat surprising when compared to the continuous case : it is easy to
see that there exists a right inverse (V')~! which maps H® = V-(H**')?
boundedly into (H**!)%, Vs=0. A similar result holds with homogeneous
Dirichlet boundary conditions, even for non-smooth (polygonal) domains )
(¢f- 1D.

Methods that use high degree polynomials to approximate the solution to
the Stokes equations are quite common, whether they be variationally based
spectral methods, or collocation based pseudo-spectral methods (cf. [10]).
Another possibility is the so-called p-version of the finite element method
(cf- [3)) : it uses a rather coarse mesh (triangulation or lattice) and achieves
convergence by including, in a variational formulation, piecewise polyno-
mials of high degree relative to this mesh. Even though the Babuska-Brezzi
condition may only be satisfied with a constant approaching zero as some
negative power of p, these methods often have optimal convergence rates as
far as the velocity is concerned. We briefly return to an explanation of this
(at least for variational methods) towards the very end of this paper. The
lack of divergence stability may possibly reduce the convergence rates of the
computed pressures. We conclude this paper with a numerical example that
demonstrates such reduction in the case of a « driven-cavity » flow problem.

In case of periodic boundary conditions it is normal to consider spectral or
pseudospectral methods based on trigonometric polynomials instead of
polynomials. The resulting methods are much more likely to be uniformly
divergence stable (see, e.g. [8]), however, they are restricted in their
applicability due to the special boundary conditions.

Methods that use high degree polynomials have also been proposed for
mixed formulations of second order scalar elliptic problems, cf. [20]. In that
connection the required stability estimate is very closely related to a bound
on the #(L?; L?-norm of a right inverse for the divergence operator. The
estimate is much weaker than the divergence stability estimate (5) that we
are concerned with here, and it has been verified to hold (essentially)
uniformly in p for the so called Raviart-Thomas element as well as the
Brezzi-Douglas-Marini element, cf. [20].

To complete the introduction, let us give an interpretation of the constant

J V- vgdx
min max 0

T = Ky
qEW\ (0} vEVy ||2||H1||‘1||L2 ’
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DIVERGENCE STABILITY IN THE p-VERSION OF THE F.EM. 741

in terms of the associated matrices, when %"y = V- ¥ . We first specify our
choice of norm on [H']?: of the many equivalent norms we take

2\ 12
J vdx ) .
[

Let {gg}f,v:l be a basis for ¥, and let {¢k}kM=1 be a basis for

Wy =V ¥y. The matrices 4 = (a)i2N¢_1, B= (bp)y M ¢_1 and
C = (cu)¥M ¢, are defined by

2
g dx +

el g = (;

M
(6a) Vier=Y aw by, l<sfl<N,

k=1

2 3 3

b by = — @ — ppdx + dx - d
(6) ] ,; L,ax,- P 5y 29X chk x Lge x
1<k, 0 <N,
and
(60) Ckg=J W pdx, 1<k, l<M.
Q

A is the discrete representation of the divergence operator and (B., . ) and
(C.,.) represent the quadratic forms ||v|| i{" and | g%, respectively.

With these definitions it is easy to see that p, is the smallest singular value
of the N x M matrix B~'2 47 C'2 and this in turn is the square root of the
smallest eigenvalue of the positive definite symmetric M x M matrix

Q) D=C'"?4B~'47C'2,

For any ge W y let (V)y'qe ¥ 5 denote the element of minimal
H'-norm that has ¢ for its divergence. By a « worst possible pressure » (as
far as divergence stability is concerned) we mean a go€ #'y, |0l ;2= 1,
for which the « minimal norm » right inverse (V')y! attains its operator
norm. If x € R™ denotes a unit eigenvector for the matrix D, corresponding
to the smallest eigenvalue, p%, then

M
® do = 2 (C-m)_c)j ¥; € L

j=1

is a worst possible pressure.

vol. 24, n’ 6, 1990



742 S. JENSEN, M. VOGELIUS

1. A RESULT FOR THE SPACES 2,

Let R denote the square (—1,1) x (— 1, 1). In this section we consider
polynomials of separate degree < p, i.e., the velocity space is (‘_421,)2 with

) 2,=span {x"x3:0<m,n<p },
and the corresponding pressure space is
(10) V'(2,)* =span {'x}:0<m,n<p, m+n<2p }.

Note that we use p as a subscript instead of the dimension variable
N = (p + 1)% We use the notation (V » ! for the right inverse with minimal
H'(R) norm.

PROPOSITION 1 : The operator (V );1 :V'(Qp)2 - (,Qp)z, p =1, considered
as an operator from a subspace of L*(R) to a subspace of (H'(R))? satisfies

- 1
p= (V) | g2, gy =CP>
with constants 0 < c¢ and C independent of p.
Before giving a proof of Proposition 1 we make a few observations about

orthogonal polynomials (cf. [14]). Let £,(x) denote the Legendre polyno-
mial of degree n, with the standard normalization

1) 02 dx =

It is not difficult to see that

X
1
2 J_len=2n+1(e”“(x)_fn—l(x)), n=1.
The polynomial ¢, may be written as a telescoping series
fn/ 2]-1 0 nodd
e = e . — e . 1>
" ,;0 Croa =B {[?0, neven,

and consequently

/211 ¢,, nodd

) ,xm= 3 (2(n—2j—1)+1)f L’,,_z,-_1+{eo
=0 -1 >

neven .

MZAN Modélisation mathématique et Analyse numérique
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DIVERGENCE STABILITY IN THE p-VERSION OF THE F.E.M. 743

1 2 [/ 2] -1
From this we conclude that j ( d%c ¢ ,,) dx is of the order Z Jj, ie.,
-1 Jj=0
! d 2 ) )
(14) f ( — i’,,) dx is of the order n 2.
_, \dx

Let ¢g,(x), 0 =n=<p denote the polynomials

Qn(x) = fn(x) —O=n <p

(15) )
Qp(x) = J ep—l
-1

(the notation should properly be ¢, since the definition of g, depends on

p, but we drop the superscript for convenience). An elementary compu-
tation shows that the polynomial

r,(x) :ufp~2+BJ\ t,_,, p=2,

-1

satisfies

2 o B2 ) jl R

ot + = r(x)) dx =
3<2P+1 Qp+1)2p-1) _1(,,( )

2 2
=6 ( @ 4 B ) .

2p=3 (2p-3)@p-1)
Since {£,}?~% U {€, ,} are mutually orthogonal in L? and since these are

X
also orthogonal to £, , and J £,_,, it follows that
1

1 P 2
(16) f ( Z a, 4,(x) ) dx 1is equivalent to
-1 n

=0
p—1
Y ap(n+1)"'+aj(p)~?, with constants
n=0
that are independent of p.
It is convenient to work with

{qm(xl) g,(%):0=mn=sp m+n< 2p}

vol. 24, n° 6, 1990



744 S JENSEN, M VOGELIUS

as a basis for V'(2,)’. Based on (16) we get that if

q = z Oy qm(xl) Qn(XZ) s

mn=0
m+n<2p
then
a7 J (¢)*dx is equivalent to
R

Y (@) ’m+ 1)+ 1)+ Y (0 )+ (0pn))) (m+ 1) p73,

with constants that are independent of p.

We are now ready for the proof of proposition 1

Given g € V'(‘,@I,)2 we have

14

q = Z Qypn qm(xl) qn(x2)

mn=0
m+n<2p

for some set of coefficients {«,,,}. Define

Y O (F qm> 7.,(%) + Y o, (rl qm) q,(x)
n<m<p -1 -1

m<p

X2 X2
Z Oy Ao (xl) J( q, + z a‘nn qp(xl) J dn
1 -1

m=n<p - n<p

IR
il

It is clear that u € (,Qp)z, with V'u = ¢g. It remains to estimate the
H'norm of u. Using (17) we immediately get that

Pyl !

0x;

8x2

=Cllq|l Lz >

2 + ' 2 2
L*(R) L*(R)

also

and therefore

= C”q”ﬁ(R)'

J,o

M?AN Modélisation mathematique et Analyse numérique
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DIVERGENCE STABILITY IN THE p-VERSION OF THE F.E.M. 745
. 0
Concerning — u; :
GXQ

2

0
18 — =
(1) Hax2“1

I ATETArS

n<m<p

+ z amp(J‘jll gm) gp—l(xﬁ)

m<p

LRy
2

LYR)
<sC Y (m +1)73

m<p

m — 1

d 2
Z 0Lmrt(agrl)_+'(y“mpep—l
n=0

X

LY~ 1,1).

The last estimate comes from the identities (11) and (12) and the
L%*orthogonality of the Legendre polynomials. From (18) we get by means
of the triangle inequality, Schwarz inequality, and the estimate (14), that

d 2

aXZ

<C Y (m+ 1)-3<mf ()= S n2+ (am,,)zp-‘) ,

! 2
L%(R) n=0

m<p

the right hand side of which is bounded by

C( Y (@)t ¥ (am,,)z(m+1)-3p-‘).

n<m<p m<p

Using the above estimate in combination with (17) we get

0 21 112
— =Cplallsz e -
|2l =cratin,
. ) 2
The same estimate holds for |[[— u, . In summary we have thus
0x; L%(R)

established

Nl ey = €210 2z, -

and since (V' );1 q is by definition the field of minimal H'-norm it follows
that

” (V'); ! ” B2 HY =sCp.

To verify the second inequality of this proposition, take

g* =r(x) fp(xz)

vol. 24, n® 6, 1990



746 S JENSEN, M VOGELIUS

for some fixed nonzero polynomial r, independent of p (we consider only
p =degree(r) + 1, so that g* € V'(2,)*). As a basis for 2, we choose

{gm(%1) 4,(%) : 0<=m,n<p }.

For an arbitrary u € (‘QI,)2 there exist coefficients {a,,} and {B,,} such
that

P
U = Z Ay qm(xl) qn(XZ)
mn =0
V4
Uy = Z an dm (xl) qn(x’l) .
,n=0
IfVu= 5371 u, + aix,z u, = g*, then we must necessarily have

S (d ( )Jl 0 d
o, _qm> X q X =
mgo P\ dx 1 ) pp

1
= jl V u(x, x,) fp(xz) dx, = r(xy) J 1712, dx .
-1 -1

Due to (12) and (15) it follows that

d S 2 1
Z’b_C (mgoampqm> =( P — )r,

and therefore

(19) = z q"(x2) Z Xy Qm(x1)+qp(x2)(2p— 1)(J‘xI r+c) .
-1

n<p msp
Differentiation with respect to x, yields

a—‘;’c—zulzng (d%q,.)(aa) Y % Gm(x1) +

() 2p - 1)([“ r+c) ,
-1

from which it now follows (by orthogonality) that

[ (ggn) s (] o)

—u d)_c;ZZp—l)J (J r+c> dx =

R ox, ! -1 -1

X 1 1 x

J r———f j r dx
-1 2) 00

M2AN Modélisation mathématique et Analyse numérique
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DIVERGENCE STABILITY IN THE p-VERSION OF THE F.E.M. 747

At the same time

2

2 2

g™ ||L2(R) = 2p+1 7l L3-1,1)°

and so we have proven that for any u € 2, with V' = g* one has

Il gy = 2 19* 2,

for a fixed r (the constant ¢ of course depends on our choice of r). This
verifies the lower bound on the norm of (V') L (]

1
Remark 1.1: 1If J r=0 and p=degree (r)+1 then g* =
-1

9

X9 °
r(x;) J l’p_l is an element of V-(£)?, where 2,=2,N{u=00ndR}.
-1

x1 x2
Indeed V' u* = g* foru™ = (J ¥ fp_l, 0>. It follows now by a slight
-1 J-t

change of the argument in the last part of the previous proof that the
minimal norm right inverse (V' );1 : V‘(‘,@p)2 - (.,@1,)2 also must satisfy
a-1
Rl [Loral P
Remark 1.2 : The estimate in Theorem 3.1 of {17] is somewhat related to
the upper bound in Proposition 1. The estimate in {17], however, concerns
the gradient operator ; it is therefore much closer to an @ (p)-estimate of the

B(H'; L?-norm of a right inverse for the « adjoint » divergence operator.
We refer the reader to [26] for other estimates related to Proposition 1.

2. RESULTS FOR THE SPACES 2,

We now consider polynomials of total degree <p on the square R.
Without boundary conditions the velocity space is (91,)2, where

P,=span{x{"x;:m+n=<p},

and the corresponding pressure space is V'(g’,,)2 = Z2,_,. With Dirichlet
boundary conditions on the entire boundary the velocity space is
(2, )%, where

Pp =P, N {ul,g =0},

and the pressure space V'(go’p)2 is of codimension 9 in 2, _; (p = 5).

vol. 24, n" 6, 1990



748 S JENSEN, M VOGELIUS

PROPOSITION 2 Let (V),': 2, | - (2,)% p=1, denote the right
mverse with mmmimal H'-norm Considered as an operator from a subspace of
L%(R) to a subspace of (H'(R))? this satisfies

1V gz mry=<CP
with C ndependent of p

Proof Given g€ &, _, we have

m+n<p

q= Z Xyn em(xl) gn(x2)
mn=0
for some set of coefficients {a,,} Define

m+i<p Qyp (JXI em) en(XZ)

n<m -1

m+i<p QX em(xl) (JXZ en)

msn -1

IR
Il

It 1s clear that u € (?l,)2 with V u = ¢ Using the first part of the proof of
Proposition 1 we get the estimate

”L—‘” H'(R) = CP ”q” L%(R)

(in this case we just have g, = 0 for m, n that simultaneously satisfy
OSsmn<spandp=sm+n<2p) This verifies the desired estimate on the
operator norm |

For the case of Dirichlet boundary conditions on the entire boundary we
have

PROPOSITION 3  Let (V );l Y (93‘,,)2 N (931,)2, p =4, denote the right

mverse with mmnimal H'-norm Considered as an operator from a subspace of
L%(R) to a subspace of (H'(R))?% this satisfies

-1
2= 1% g -
with 0 < ¢ independent of p

Proof Consider

q* = el(xl) J i gp-—3
1

M?2AN Modelisation mathematique et Analyse numerique
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It is clear that g* € V‘(?o”p)z, indeed,

ngq* for Q=(leIJ28p—3’O)'
-1 -1

On the other hand, if ue (90’1,)2 is an arbitrary velocity field with

V' u =q¥%, then
m+n<p 2 J J
m,n= 1 -1

m+n<sp-2
Z an J fmJ‘ f’l
mn=1 -1 -1
and

S [am,, fm(xl)U” e,,) N B,,,,,(f"‘ e,,,) en(xz)] _
mn=1 -1 -1

= el(xl) J ' ep—} .
-1

N
Il

Using (12) and the linear independence of the Legendre polynomials we get

p-3

Xy p-4 X
(20) Z Qg J gn —% Z BZn gn(XZ) = J ep—3 >
n=1 -1 n=1 -1

since these are the respective coefficients of £,(x,). The identity (20) implies
(llp -3 = 1 s

and since

9 miyn=<p-2 Xy
a_xzulz z o"mn(J‘_lgm> Bn(XQ):

mn=1

= Z 2m + 1 o‘mn(gm-:—l(xl)—gm_l(xl))gn(xz),

it follows that

2 1 ) 1 82 1 82 4
u = - = ——,
ey~ 9 l”_3j_1 OJ—I 737 92p-5)

A simple computation gives

)

o Xy

@1) 1

8
||q* ”2Lz(R) =3 >
3@2p-3)2p-35)2p-17)

vol. 24, n’ 6, 1990



750 S JENSEN, M VOGELIUS

aIld tllerefOIea n llgtlt Of (21)3
|| H = ( )( ) L~
[Z] ” I(R) = —6 2 p :; 2 p —_ 7 ” q ” ’)(R) .

Since u is an arbitrary field in (.é’p)z, with V' 4 = g*, this gives the desired
lower bound on the operator norm. ]

We do not know the exact order of | (V'),'| B, HY for any of the two

cases covered by Propositions 2 and 3. It is easy to see that one always has

L vl a2, 1Yy With Dirichlet boundary conditions on all of 8R we

V2

can through a direct construction verify that || (V"), ' awr.my=CP 2 At the

end of this section we provide some numerical results concerning the cases
covered by Propositions 2 and 3.
We have a somewhat tighter estimate with Dirichlet boundary conditions

on one side only. Let j’; denote the space
@;:9,,0 {u=0at x; =-1}.
For the velocity space (.@I;)Z and its corresponding pressure space

V'(ﬁp')2 = 2, _, we have

PROPOSITION 4: Let (V'),': 2, | = (2,)%, p=1, denote the right

inverse with minimal H'-norm. Considered as an operator from a subspace of
LY(R) to a subspace of (HYR))? this satisfies

cp =< |(V), : | BLHY S Cp",

with 0 < ¢ and C independent of p.

Proof : Given g€ £, _, we have

G= Y b)) £, (%)

mn=0

for some set of coefficients {a,,,}. Define

Y (J | fm) t’,,(x/z)l
u(l) = mr::z’:p - X
- z ®yn em(xl) (j en)

m=n -1

M?AN Modelisation mathématique et Analyse numérique
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It is clear that ¥ e (2, with V¥ =4 in R and (V=0 at
x; = — 1. From the proof of Proposition 2 we get

(22) | ”—l(l)”Hl(R) = Cpllall L2 -

Let ¢ denote the polynomial

p-1 [ Mnp) x| Xy
¢ = Z l: Z o, (— I)M+M(n,p)jl (J eM(n,p)) (J g,,) ,
n=0 m=0 -1 -1

with M(n,p) =min (n,p — 1 —n ), and set

> 2 5
—, ax](p)E(.@p) .

Q”:Vx¢=(
axZ

Since £,,(— 1) = (= 1)™ (see equation (13)), it follows that

@ __ 209
(23) U |x1=_1—_§;1“’|x1=_1
p-1 [M(np) X
== Z [ Z amn(_l)ijJ\ fn
n=0 m=0 -1
1
=_u2()|x1=—1'
We also h 2 LAY =0
e also have Uy |xl=,1—a—x2‘le=ﬁ1— >

and as a consequence of this and (23), the field

u=u® 4 y®

satisfies u = 0 at x; = — 1, 1e.,
ue (2,).
The field u also satisfies
Vu=¢g inR
In order to show that
(24) lell e =< €2 P19 2y

it suffices, in light of (22), to show that

are bounded by Cp*?|q|| LARY

Q@

ox; ~

O
8x2

and {

L3(R) LYR)
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We consider the term

2 9 2 2 62 2
111_,@ 2‘(_)4, +’ o .
0, LYR) 9x, LX(R) 9x; 0%y ||zXR)
Let B, denote the coefficient
M, p)
Z 0Lmn(" 1)m+M(n,p) .
m=0

It is easy to see that

82 2

p-1
= 2 -1 -1
ax, 9%, =C Y BiM(n,p)+ 1) '(n+1)

L*(R) A0

(25) l

Using the formula (12) and the estimate (14) we get

F) 2

=C Z Ba(M(n,p) + 1) (n+1),

n=0

2

L® L2(R)

since the indices M(n,p ), 0 <n =<p — 1, have at most two occurrences of
the same fixed value. A combination of (25) and (26) gives

2 p-1

<C ¥ B(M(n,p)+1)3(n+1),

9
m [
@7 1} 8%, lL2(R)
since M(n, p) <n. Schwarz inequality implies that

Mn, p)
(28) Br< Y opu(M(mp)+1).

Insertion of (28) into (27) now yields

2w, =<¢T 3 shnnp) a1y
o e e e ™ ’
p-=1 M(np)
=Cp’ Y ¥ oh(m+1)y(n+1)!
n=0 m=90

m+n<p
=Cp3 Z arzrxiz(m+l)_l(n+l)_la

which again is bounded by Cp? g "iz( R (due to (11) and the orthogonality
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,  may be estimated in
LA(R)

the exact same manner, and consequently we have established (24), i.e., we
have verified the upper bound on the operator norm.
To verify the lower bound, take

*2
q*:J‘ ep_z.
-1

Using the same argument asin the proof of Propositionr3; but considering
the coefficients of fy(x;), we get that any solution of V' u = ¢g* with

of the Legendre polynomials). The term H % u®
1

u € (#,)* must satisfy

"li”H‘R BCP“q*”LzR s c=>0.
(R) (R)

This establishes the lower bound on the operator norm. [ ]
We conclude this section with some computational results concerning the

velocity spaces (9’1,)2 and (90”1,)2. As a basis for £, in our computations we

pick products of integrals of Legendre polynomials (supplemented by the
constant function) :

1, J] gm,szn Osm,n<p-1,
(29) -1 -1

X} X
J fmJ- f, 0O<m,n and m4n<p-2.
-1 -1

As a basis for V'(Q’p)2 = 2,_, we pick
(30) €,(x) €, (x) O<mmn and m+n=p—1.

The top plot in figure 1 shows the smallest eigenvalue of the matrix D (as
defined in (7)) for p varying between 1 and 18 when no boundary conditions
are imposed on the velocity fields. The eigenvalues were computed using
two EISPACK subroutines : first the matrix was transformed (by orthogonal
similarity transformations) into a tridiagonal matrix using subroutine
TRED?2, then the eigenvalues were computed by the QL method (an
obvious variant of the QR method) using subroutine TQL2. The
AB(L?; H") norm of the « minimal norm » right inverse is the reciprocal
square root of the smallest eigenvalue. The numbers do not clearly indicate
whether these right inverses are bounded independently of p — if anything
they seem to indicate that the norms grow as p — oo, but only as a very small
power or possibly a logarithm of p (the corresponding solid line was
computed by linear regression on the last four points, it is proportional to
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