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STABILITY OF THE SOLUTIONS
OF IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS
IN TERMS OF TWO MEASURES (*)

G. K. KuLev (), D. D. BAmNov ()

Communicated by R. TEMAM

Abstract. — In the present paper the stability of the solutions of impulsive systems of integro-
differential equations of Volterra type with fixed moments of impulse effect in terms of two
piecewise continuous measures is investigated. The investigations are carried out by means of
piecewise continuous functions of the type of Lyapunov’s functions using differential inequalities
for piecewise continuous functions.

Résumé. — Stabilité des solutions d'équations intégro-différentielles impulsionnelles, en
Jfonction de deux mesures.

Dans ce papier on étudie la stabilité, en fonction de deux mesures continues par morceaux, des
solutions de systémes impulsionnels d’équations intégro-différentielles de type Volterra, avec effet
impulsionnel a des moments fixés. Cette étude est menée au moyen de fonctions continues par
morceaux, du type fonctions de Lyapunov, et utilise des inéquations différentielles pour des
fonctions continues par morceaux.

1. INTRODUCTION

Impulsive differential and integro-differential equations represent an
adequate mathematical model of many real processes and phenomena
studied in physics, biology, technology, etc. Moreover, the mathematical
theory of impulsive differential equations is much richer than the respective
theory of ordinary differential equations. That is why in the recent years this
theory develops very intensively [1]-[7].

The use of classical (continuous) Lyapunov’s functions in the study of the
stability of the solutions of impulsive systems of differential and integro-
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94 G. K. KULEV, D. D. BAINOV

differential equations by Lyapunov’s direct method restricts the pliability of
the method. The fact that the solutions of such systems are piecewise
continuous functions shows that it is necessary to introduce some analogues
of Lyapunov’s functions which have discontinuities of the first kind. By
means of such functions the application of Lyapunov’s direct method to
impulsive systems of differential and integro-differential equations is much
more effective [3]-{7].

The advantages of the study of the stability of the solutions of differential
and integro-differential equations by means of two different measures and
the generality and the unification obtained by this approach are well known
[7], [91.

In the present paper the question of stability of the solutions of a general
class of impulsive systems of integro-differential equations of Volterra type
with fixed moments of impulse effect in terms of two piecewise continuous
measures is considered. The investigations are carried out by means of
piecewise continuous functions which are analogues of Lyapunov’s func-
tions, and by means of the theory of differential inequalities for piecewise
continuous functions. By this techniques, the study of the solutions of
impulsive integro-differential systems is replaced by the study of the
solutions of a scalar impulsive differential equation. For this purpose one
chooses certain minimal subsets of an appropriate space of piecewise
continuous functions, by the elements of which the derivatives of
Lyapunov’s functions are estimated [10].

2. PRELIMINARY NOTES AND DEFINITIONS

Let R" be the n-dimensional Euclidean space with a norm |.| and
R, = [0,00). Consider the following impulsive integro-differential system

x'(1) :f(t,x(t), Jr K(t,s, x(s)) ds) , t#ET

Ax|, . =T1(x(7)), Q.
x(th+0)=x, tpeR,
where
SR, xR"xR"->R", K:R, xR, xR"->R", I.:R">R",

O<to<7ey1, kK=1,2,..., Ax]| =x(1, +0) — x(7, — 0) .

t=1,

Let 1, R, and x, € R". Denote by x(7; ¢, x,) the solution of system
(2.1) satisfying the initial condition x(# + 0; ¢, x¢) = xo- The solutions
x(t) = x(t; ty, xy) of system (2.1) are piecewise continuous functions with
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IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 95

points of discontinuity of the first kind 7., xk = 1, 2, ..., at which they are
continuous from the left, i.e. at the moments of impulse effect 7, the
following relations hold

X(TK_O) :X(TK); ‘x(TK+0) :‘x(TK)+IK(x(TK)) .

Together with system (2.1) we shall consider the impulsive differential
equation
u'=g(t,u), t#7 Au|, _ =BJ(u(r)),

2.2
u(ty+0)=uy =20, toelR, , 2)

where
g:R+ XR+ —>R+ s BK:R+ —)R+ .

We shall introduce the class ¥, of piecewise continuous auxiliary
functions which are analogues of the classical Lyapunov’s functions [3]-[6].
Let 7y = 0. Introduce the sets

G.= {(t,x)eR, xR":7_<t<7}, G= (_JG,.

k=1

DEFINITION 2.1: We shall say that the function V:R, xR" >R,
belongs to the class ¥, if V is continuous in G, locally Lipschitz continuous

in x in each of the sets G and for x = 1,2, ... and x, € R” the following limits
exist

Vir,—0,x4) = lim Vit,x), V(. +0,x9) = lim V(t, x)
(8, x) = (7 Xo) (1, x) = (7, Xo)
(t,x) e G, (t,x)eGyyy

and the equality V (7, — 0, x4) = V (7, X) holds.

In the further considerations we shall also use the following classes of
functions :

H = {ae C[R,,R, ]:a(.)is monotone increasing in R, and a(0) =0},
CH ={aeC[R, xR, ,R,]:a(,.)forany reR,),

2CIR,,R"] = {x:R, -R":x is piecewise continuous with points of
discontinuity of the first kind 7, and x(r, — 0) = x(7,)},

= {he ¥ ,: inf h(t,x):OforanyteR+} ,
xeR”
E ;= {xe Z2C[R,,R"): V (s, x(s)) A(s)
= V(,x(t)A@), g =s =1},

vol. 25, n" 1, 1991



96 G K KULEV, D D BAINOV

E, = {xe ZC[R,,R"] .V (s, x(s))
= V(t,x(t),tg =s =t}

Ey= {xe ZC[R,_,R"] : V (s, x(5))
= OV (t,x(8))),t) = s = t,t 2 1y},

where
(1)) A(t) >0 1s a continuous 1n R, function,

() ®(u) 1s continuous and nondecreasing n R, and ®(u)>u for
u=0

Let S(h,p) = {(t,x)eR, xR":h(t,x) <p}, heT, p=0

We shall say that conditions (A) are satisfied if the following conditions
hold

Al feC[S(hp)xR"R"]

A2 Ke C[R, x S(h,p),R"]

A3 I,eC[R",R"], x =1,2,

A4 0<T1<T2<--- and Im Ty = ©

K — 00

A5 ge 2C[R,,R,]1and g(1,0)=0, 1 e R,

A6 B e C[R,,R,1, B.(0)=0 and ¥, (u) =u+ B, (), x =1, 2,
are nondecreasing in R,

A7 There exists py, O<py<p such that A4(7,x)<pg 1mplies
h(re+0,x+1,(x))<p, k=12,

DEFINITION 22 Let hy, he ' We shall say that

(@) hy s finer than h if there exists a number 3 =0 and a function
¢ € A such that hy(t + 0, x) <d mmphes h(t,x) = ¢(hy(t +0, x))

(b) hy 1s weakly finer than h if there exists a number 8 =0 and a function
¢ € CH such that hy(t + 0, x) < wmplies h(t,x) = @ (¢, ho(t + 0, x))

Let Ve ¥, t=>t,t+7 and xe PC[R,,R"] Introduce the function

D_ V(i x(1)) = hm 1nfé [V(t+0,x(t) +

o 07

+of (t, x(1), jt K(t,s, x(s)) ds) — V' (¢, x(1))]

0

We shall give definitions of stabihity of system (2 1) in terms of two
different measures, by which various classical notions of stability are
generalized
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DEFINITION 2.3 : System (2.1) is said to be :
@) (hg, h)-stable if
(ViyeR,)(Ve =0)(38 =8 (75, ¢) > 0)(Vx, e R”,
ho(to + 0, xo) << 8)(Vt > to) : h (t, x(t 5 to, xO)) << €.

(b) (hg, h)-uniformly stable if the number & of (a) does not depend on
to.
() (hy, h)-equiattractive if

(Vi e R, )(38, = 8y(25) = 0)(Ve = 0)(AT = T(t5, £ ) > 0)(Vx, € R”,

ho(lo + 0, Xr\)) << 50)(\” > to + T) . h(t, x(t . to, Xo)) < €.

(d) (hg, h)-uniformly attractive if the numbers &, and T of (c) do not
depend on 1,

() (hgy, h)-equiasymptotically stable if it is (hgy, h)-stable and (hg, h)-
equiattractive.

) (hy, h) uniformly asymptotically stable if it is (hg, h )-uniformly stable
and (hgy, h)-uniformly attractive.

For a concrete choice of the measures £, and 4. Definition 2.3 is reduced
to the following particular cases :

1) stability by Lyapunov of the zero solution of (2.1) if
ho(t, x) = h(t,x) = | x| ;

2) stability with respect to part of the variables of the zero solution of
2.1 if

ho(t,x) = | x|, h(t,x) = |x| = /X4 ---+x}, 1 =« = n;
3) stability by Lyapunov of a nonzero solution x;(z) of (2.1) if
ho(1, x) = h(1, x) = ||x — %) ;
4) stability of an invariant set 4 «R" if
ho(t,x) = h(t,x) =d(x, 4),

where d is the distance in R”;
5) stability of a set M <R, xR” if

ho(t,x) = h(t, x) = d(x, M(1)),
where M(t) = {xeR": (t,x) e M} # ¢ ;

vol. 25, n° 1, 1991



98 G. K. KULEV, D. D. BAINOV

6) stability of a conditionally invariant set B with respect to 4 where
AcBcR™if

ho(t,x) = d(x, A), h(t, x)=d(x, B).

DEFINITION 2.4 : Let hy, he T and V € ¥ . The function V is said to be :

(a) h-positively definite if there exists 8 = 0 and a function a € A~ such that
h(t, x) < implies V(t,x) 2 a(h(t,x));

(b) hy-decrescent if there exists 8 =0 and a function be A such that
ho(t + 0, x) <8 implies V(t+0,x) = b(hy(t +0,x));

(c) weakly hy-decrescent if there exists 8 = 0 and a function b € CH" such
that hy(t + 0, x) <& implies V(t +0,x) = b(t, hy(z + 0, x)).

3. MAIN RESULTS

In the proof of the main theorems we shali use the following comparison
lemmas :

LEMMA 3.1: Let the following conditions be fulfilled :
1. Conditions (A1)-(A6) hold.

2. The function V. e ¥y, V:S(h,p) - R, is such that for t = t, Z 0 and
XEEI

D_V(t,x(1)) = g(t, V(z,x(1))),

if t#7,, k=12 ..
Vit +0,x(7) + I.(x(7))) = 4 (V(v,x(7))), if t=7.. (3.1
3. The solution x(t;ts, x,) of system (2.1) is such that
(2, x(t +0; 1y, x9)) € S(h,p) for t € [t,, B] where he T.
4. The maximal solution r(t ; ty, ugy), Uy V (1, + 0, x4) of equation (2.2)
is defined on the interval (t,, © ).
Then

V(ta x(t 5 tO) .Xo)) =

r(t;te,uy) for te (1, B]. 3.2)

Proof : The maximal solution r (¢ ; to, ) of equation (2.2) is defined by
the equality

ro(tstpug), tog<t =

rl(t;’rl,ur)’ T1<t

r(t;tO’ uO) =

where r.(¢; T, ul) is the maximal solution of the equation without
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impulses #' = g(¢,«) in the interval [r,7,,;], k =0,1,... for which
u: = lbx(rx—l(TK;TK—lau:—l))’ K = 1: 2a ... and u(;- = Uy.
Let t € (2, 711 N (%, B). From [10], Theorem 2.1 it follows that

V(t, x(t;tg, xg)) = ro(t; g, ug) =r(t; g, o)

i.e. inequality (3.2) holds for ¢ € (¢, ;] N (%, B -
Assume that (3.2) holds for t € (7, _, 7] N (%, B], x = 1. Then, making
use of (3.1) and of the fact that the function ¢, is nondecreasing, we obtain

V(TK+0’ X(TK+0;10, XO)) = ¢K(V(Tx: x(TK; th xO))) =

= ll’r((r('rk 5 tO’ u())) = ¢K(rK(TK;TK—1’ u:— 1)) = u: .
We apply again [10], Theorem 2.1 for ¢ € (7, 7., 1] N (%, B] and obtain
V(t, x(t 5 th XO)) = rx(t s T u:) = r(t 5 th uO) 5

ie. inequalit}; (3.2) holds for t € (v, 7, 1] N [%, BI.
This completes the proof of Lemma 3.1.
COROLLARY 3.1: Let the following conditions hold :

1. Conditions (A1)-(A4d) are satisfied.
2. The function Ve ¥, V :S(h,p) - R, is such that fort = t, = 0 and
x € E,

D_V(t,x()=0, if t#7,, k=12,..
Vite+0,x(7) + 1, (x(7))) = V(T,x(7)), if t=7

K -

3. Condition 3 of Lemma 3.1 holds.
Then

V(t, x(t 5 to, XO)) = V(to + 0, Xo) .

LEMMA 3.2: Let the following conditions hold :

1. Conditions (A1)-(A6) are satisfied.
2. The function V e ¥y, V :S(h,p) - R, is such that fort > t, Z 0 and
xe E,

AWD_V (i, x()+V(t,x(t))D_ A(t) =
=g, AV, x())), if t#7v., x=12,.., (33)
Al + 0) V(me + 0, x (7)) + 1 .(x(7))) = 4 (A(7) V(7 x(7)))
if t=7., (34
where A(t) =0 is a piecewise continuous in R, function with points of

vol. 25, n° 1, 1991



100 G. K. KULEV, D. D. BAINOV
discontinuity of the first kind =, at which it is continuous from the left,
A(r. +0) >0 and

D_A(t) = 1iminf(lr [A(t+0)—A()] .

o 0"

3. Condition 3 of Lemma 3.1 holds.

4. The maximal solution r(t;ty, ugy), uy = A(LH+0) V(th+ 0, xy) of
equation (2.2) is defined on the interval (ty, o).

Then

A@) V(t, x(t ;19 x0)) = v(t;1g,uy) for te (t,B]. (3.5
Proof : Set
L(z, x(2))

Lett >tfand xe E, . Fort #1, x = 1,2, ... and o <0 small enough we
have

A@) V(e x(t)).

L (t 4+ 0,x(t) + of (t, x(1), JI K(t,s,x(s)) ds) ) —

—L(t,x(t)) = V(t + o, x(t) + of (¢, x(2),
N K(t,s,x(s))ds))[A(t + o) — A(2)]

vip

+ AV (¢ + o, x(t) +of (2, x(2),

~

t K(t,s5,x(s))ds)) —V(t,x(¥))].

Jiy
Then from (3.3) and (3.4) it follows that
D_ L(t,x(t)) =g(t,L(t,x(t))), if t#7,, v=12,..
L+ 0, x(1) +1,(x(7))) = b (L7, x(7,))), if 1=1,
fort > # = 0 and x € E, where E| is the class defined by L (¢, x) instead of
V(t, x).
Applying Lemma 3.1 for L(z, x), we obtain that inequality (3.5) holds.

THEOREM 3.1 : Let the following conditions hold :

1. Conditions (A) are satisfied.

2. hy, hel and hy is weakly finer than h.

3. The function V€ ¥y V:Sh,p)—>R, is h-positively definite in
S(h, p) and weakly hy-decrescent.

MZ2AN Modélisation mathématique et Analyse numérique
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4. For t >ty 2 0 and x€ E,
D_V(t,x(t)) =g, V(t,x(2), if t#7v,, k=1,2,..
Ve +0,x(r) + 1.(x(7))) = ¥ (V (7, x(7))), if t=1,.

Then

(a) if the zero solution of (2.2) is stable, then system (2.1) is (hy, h)-stable ;
(b) if the zero solution of (2.2) is equiasymptotically stable, then system
(2.1) is equiasymptotically stable.

Proof : (a) Since V is h-positively definite in S(%, p ), then there exists a
function a € A" such that

V(t,x) 2z a(h(t,x)), (t,x)eS(hp). 3.9)

Since V' is weakly hy-decrescent, then there exist 8, = 0 and b € C# such
that

V(t+0,x) = b(t,ho(t +0,%)) for ho(t+0,x)<8,. (3.7)

From condition 2 of Theorem 3.1 it follows that there exist 3, = 0 and a
function ¢ € C4" such that

h(t,x) = @(t, ho(t +0,x)) for ho(t+0,%x) <8,. (3.8)

Let 0 <& <pgand 4 € R, . From the properties of the functions b and ¢
it follows that there exist numbers 8; = 835(f,¢e), 0<8; <9, and
84 = 84(t0, p), 0 << 84 << 82 Such that

b(ZO, 83) <e¢ and [} (to, 84) <pP. (39)

From the stability of the zero solution of equation (2.2) it follows that
there exists 85 = 85(%,, € ) = 0 such that for u; < 35

r(tsty,up) <a(e), t>t, (3.10)
where r(t;12p,uy) is the maximal solution of (2.2) for which
r(to +0 . to, uo) = Uy.

Choose 8¢ = d4(7y, €¢) = 0 such that
b (g, dg) < d5. (3.11)

Let 8 = min (33, 84, 35, 8¢). Then from (3.6), (3.7) and (3.9) it follows
that if Ay(f, + 0, x) <38, then

a(h(to + 0, Xo)) = V(to + 0, XO) =b (to, ho(to + 0, xo)) < a(e) )
which shows that A(z;, + 0, xy) <.
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Moreover, from (3.7) and (3.11) it follows that
V(ty+0,x9) <5 for hy(ty+0,x5) <3 (3.12)

Let x(z) = x(z;1ty, x,) be a sohition of system (2.1) for which
ho(2y + 0, x5) < 8. We shall prove that

h(t,x(t))<e for t=>1t,.

Suppose that this is not true. Then there exists ¢* =z, such that
T, <t* = 1, for some positive integer k for which
A(t*,x(t*)) Z ¢ and A(t,x(?))<e, tog<t =

= K-

Since 0 < & < pgy, then from condition (A7) it follows that
A(v+0,x(7.+0))=h(r,+ 0, x(7 ) + I (x(7))) <p.
Hence there exists 7% 7, <% = ¢* such that
e = h(%x(%)<p and h(t,x(1))<p, to<t =t (3.13)
Applying Lemma 3.1 for the interval (7, t°], we obtain
V(t,x()) = r(t;te, V(g +0,x0)), to<t = 1°. (3.14)
But then from (3.13), (3.6), (3.14), (3.12) and (3.10) it follows that
a(e) = a(h(?®%x()) = V(% x(%) = r (%15, V(1 + 0, %)) < a(e).

The contradiction obtained shows that A (¢, x(¢)) < ¢ for all # > £,. Hence
system (2.1) is (A, i )-stable.

(b) From assertion (a) of Theorem 3.1 it follows that system (2.1) is
(hy, h)-stable. Hence there exists 8y = 8p;(%,p) =0 such that for
ho(ty + 0, xg) < dg; we have h(z, x(t; ty, xp)) <p, t =1,

Let 0 <€ < pgand 7, € R, . From the equiasymptotic stability of the zero
solution of equation (2.2) it follows that there exist 8y = 84, (%) = 0 and
T = T(t, ) = 0 such that for uy < 3y, we have

r(t;tp,uy) <a(e), t=ty+T.
Choose 8p; = dy3(%, £), 0 < 8y3 < 8y, such that
b(2g, dg3) < Bpy . (3.15)
Then from (3.7) and (3.15) it follows that if Ay(% + 0, xy) < 8g3, then
V(tg+0,x0) = b2y, holtg+0,x9)) = b(29,803) <3,

M?AN Modéhsation mathématique et Analyse numénque
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hence

r(t; 80, V(tg+0,x0)) <a(e), t=tog+ T. (3.16)

Let 3, = min (3, dgp dg3) and let 2g(% + 0, x¢) < 3. From Lemma 3.1 it
follows that if x(¢) = x(¢; g, xo) is a solution of system (2.1), then

Vt,x(t)) = r(t;t5 V(th+0,x0)), t=tg. (3.17)
Then from (3.6), (3.17) and (3.16) we obtain that the inequalities
a(h(l, X(t))) = V(ta x(t)) = r(t 5 t0’ V(t() + Os Xo)) < a(E)

hold for ¢ =1, + T. Hence h(t,x(t)) <&, t >1ty+ T, which shows that
system (2.1) is (hg, i )-equiattractive.
Theorem 3.1 is proved.

THEOREM 3.2 : Let the following conditions be fulfilled :

1. Conditions (A) hold.

2. hy, heT and hy is finer than h.

3. The function V€ ¥y, V:S(hp) >R, is hpositively definite and
hy-decrescent.

4. Condition 4 of Theorem 3.1 is satisfied.

Then

(a) if the zero solution of (2.2) is uniformly stable, then system (2.1) is
(hg, h)-uniformly stable ;

(b) if the zero solution of (2.2) is uniformly asymptotically stable, then
system (2.1) is (hy, h)-uniformly asymptotically stable.

The proof of Theorem 3.2 is analogous to the proof of Theorem 3.1. We
shall only note that in this case the numbers 8, 3, and T can be chosen
independent of ¢,

THEOREM 3.3 : Let the following conditions hold :

1. Conditions (A1)-(A4) and (A7) are satisfied.
2. Conditions 2 and 3 of Theorem 3.2 hold.
3. For t >ty = 0 and x € E,

D_V(t,x(t) =0, if t#7,, k=1,2,..
Vite+0,x(7) + [ (x(7))) = V(Eex(n)), if t=r7,.
Then system (2.1) is (hy, h)-uniformly stable.

The proof of Theorem 3.3 is carried out analogously to the proof of
Theorem 3.1 (a). Corollary 3.1 is applied.
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THEOREM 3.4 : Let the following conditions hold :

1. Conditions 1 and 2 of Theorem 3.3 are satisfied.
2. Fort =1, 2 0 and x€ E,

D_V{t,x()) = —clhy(t,x(1))), if t#7.,x=12,..., (ceX),
(3.18)
Vit +0,x(7) + 1 (x(7))) = V(T x(7)), if t=1,. (3.19)
Then system (2.1) is (hy, h )-uniformly asymptotically stable.

Proof : From Theorem 3.3 it follows that system (2.1) is (%, 4 )-uniformly
stable. Hence for any e >0 there exists 8 = 8(e) >0 such that for
ho(2y + 0, x5) <& we have

h(t,x(t;t0,x0)) =h(t, x(t))<e, t=>t.

Since V is h-positively definite in S(A, p), then there exists a function
a € A such that

v, x(1)) = ah(t, x(1))), (t,x)e S p). (3.20)

Since V is hj-decrescent, then there exists a number 8; > 0 and a function
b e XA such that

V(t+0,x) = b(hy(t+0,x)) for ho(t+0,x)<d,. (3.21)

Let x(2) = x(t;ty xq) be a solution of system (2.1) for which
ho(ty + 0, x¢) < 3y where

8¢ = min (8(py), 3,) .

Then A(t, x(2)) <pg<p, =1

Choose M so that 0 <m = p,. Then a(n) = b(3y).

Let the function ®:R, - R, be continuous and nondecreasing in
R, and such that ®(u) > u for u >0. Set

B=B(m)=min {®(u)—u:a(n) =u = b(d)}.
Then
DPw)>u+p for a(m) =u =5b(d). (3.22)

Choose the positive integer v in such a way that

a(n) +vB =b(3y). (3.23)
If for some value of ¢ > £, we have V(1 + 0, x(t + 0)) = a(n), then

Vi, x(0)) 2 V(e +0,x(t+0)) = a(n),

bho(t +0;x(t+0)) Z V(+0,x(t+0)) = a(n), (3.29)
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hence
ho(t + 0, x(t +0)) = b~ '(a(m)) = 8,(n) =3,.
Then
c(ho(t + 0, x(2 + 0))) = ¢(8,) = d3(n) = d;. (3.25)
Set

gngx(tmn):to"‘KSE, K=O,1,2,...,v.
3

We shall prove that for any k =0,1,2, ..., v

Vi, x() <a(m)+ (v—x)B, ¢ = &,. (3.26)
Indeed, applying Corollary 3.1, (3.21) and (3.23), we obtain
Vi, x(1)) = V(5 +0,x0) = b(ho(tp+0,x0)) = b(3) <
<a(n)+vB, t=>t9=4%,

which shows that (3.26) holds for k = 0.
Let (3.26) hold for some positive integer k, 0 <k < v, i.e.

Vis,x(s))<a(m)+ (v-x)B, t = &,. (3.27)
If we assume that the inequality
V(t’x(t)) 3“(*\)*‘("—'(-1)3’ gK

is possible, we obtain

IA
~
I
722
b3
+
—

a(m) EV(E,x() =b®), &=t = &y -
Then from (3.22) and (3.27) it follows that
OV, x(1)))=V (i, x(@t)+B =Za(n)+ (v-«k)B >
= V(S,X(S)), gK =5 = t, te [§K>gx+1] .

This shows that x(.)e E, for §, = s = ¢, t €[, &c,1]- Then from
condition 2 of Theorem 3.4 and from (3.25) we obtain

§n+1
V(i x(Eci1)) = V(§K+0,X(§K+0))—J ¢(ho(s, x(s))) ds <
£

< a('ﬂ) + (V - K) B - 83[§|(+l - gK] =
=a(m)+ (v—-x-1)B <V (&, x(§)),
which contradicts the fact that x(.)e Eo for ¢ = s = ¢, t€ [, §,,1]
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Hence there exists ¢*, &,

A

t* = g, such that
V(s x(t*)) <a(m)+ (v-x-1)B,
and from (3.19) it follows that
V(*+0,x(t*+0)<a(n)+ (v—-xk-1)B.
Now we shall prove that
Vit, x(t))<a(m)+ (v—-x-1)B, t = ¢t*.
Suppose that this is not true and set
g=inf {r =2 t*:V(t, x(t)) 2 a(n)+ (v—x-1)B}.
From (3.19) it follows that §# 7, x = 1,2, ..., hence
Vg x(@E)=am)+ (v-x-1)B.
Then for ¢ <0 small enough the inequality
VE+o,x(E+0))<am)+ (v-x-1)B,
holds which implies that
D_V(x(£)=0.
On the other hand, as above it can be proved that x(.)€ E, for
t* = 5 = & hence
D_V( x(E) = -3;<0.
The contradiction obtained shows that

Vi, x())<aMm)+ (v-x-1)B, ¢t Z &,y

Hence (3.26) holds for any k =0, 1, 2, ..., v.

Let T = T(n) = v aE‘ Then from (3.26) it follows that
3

V(i x(t))<a(m) for t = ty+ T(m). (3.28)
Finally, from (3.20) and (3.28) we obtain
a(h(t, x(1))) = V(t,x())<a(m), t = tyg+ T(m)

and thus it is proved that system (2.1) is (kg, 4 )-uniformly attractive.
Theorem 3.4 is proved.
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THEOREM 3.5: Let the following conditions hold :

1. Conditions (1)-(3) of Theorem 3.1 are satisfied.
2. For t >ty = 0 and xe€ E,

AWYD_V(t,x(2)+V(t,x())D_A(t) =
=g, AV, x(D)), if t#7v,, x=1,2,...,
At +0) V(r + 0, x(7) + I (x(1))) =
= 46 (AF) Vn, x(1))), if t=7,,

where A(t) =0 is a piecewise continuous in R, function with points of
discontinuity «, at which it is continuous from the left, A(v, +0) =0,
k=1,2,... and A{(t) - © as t - 0.

Then, if the zero solution of equation (2.2) is stable, then system (2.1) is
(hg, h)-equiasymptotically stable.

Proof : Let A = inf A(z). From the properties of the function A4 (7) it
teR,
follows that A = 0.

Since V is h-positively definite in S(A, p), then there exists a function
a e A such that

V(t, x) = ah(t,x)), (t,x)e Shp). (3.29)

Since V is weakly hy-decrescent, then there exists a number 8; > 0 and a
function of b€ CX" such that

V(t+0,x) = b(t,hy(t+0,x)) for hy(t+0,x)<3;. (3.30)

Let0 <& <pgand ;€ R, . Set ¢, = ha(e). From the stability of the zero
solution of system (2.2) it follows that there exists 8* = 8* (7, €,) > 0 such
that if wuy<3*, then r(t;ty, uy) <&y, t =1, where r(t;ty uy) is the
maximal solution of (2.1) for which »(#, + 0; ¢y, #y) = u4. Repeating the
proof of Theorem 3.1 (a), replacing a(e) by ¢, and V(f + 0, x,) by
A(ty+0) V(¢ + 0, xp), we obtain that system (2.1) is (hy, & )-stable.

Hence there exists 8, = 84(%, p) > 0 such that if Ay(¢; + 0, xo) < 3, then
h(t, x(t;ty, x9)) <p for t >t

Let v >0 and 7, € R, be given. From the stability of the zero solution of
(2.2) it follows that there exists 8; = 8,(#, m) = 0 such that u;, < 8, implies
r(t; tg, ug) < m for t > £,. We can assume that 3, is a continuous and strictly
increasing function of m for ¢, fixed.

Choose the number m so that

Aty +0) b (15, 3g) = 8,(¢g, M) . (3.31)
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Let x(z) = x(¢; g, xo) be a solution of (2.1) for which Ay(% + 0, x3) < 3.
From (3.30) and (3.31) it follows that

Aty +0) V(5 +0,x0) = A(+0) b (2, ho(ty + 0, x9)) <
< A(t+0) (1o, 39) =3y,

hence
r(t; 10, A(tg+0) V(5 +0,x9)) <m. (3.32)

On the other hand, applying Lemma 3.2, we obtain that for ¢ = ¢, the
following inequality holds

A@V(t,x(2)) = r(t;t, Aty +0) V(g + 0, xp)) . (3.33)
Then from (3.29), (3.33) and (3.32) it follows that

A alh(t,x(2))) = AWV (L, x(2)) =
= r(t;to,A(to-l-O) V(l0+0,XO))<'f].

Hence h(t,x(t)) <a '(m/A(t)). From the condition A(f) » o0 as
t — oo it follows that there exists T* = T*(¢, € ) > 0 such that

h(t,x(t)) <e for t=T%*.
Set T = T(to, 8) = T*(to, E) - to. Then
h(t,x())<e for t=ty+ T

and thus it is proved that system (2.1) is (kg & )-equiattractive
Theorem 3.5 is proved.

4. AN EXAMPLE

Consider the linear impulsive integro-differential equation

x'(t) = —ax(t) + Jl K(t,s)x(s)ds, t#7,;

@.1)

Axl = —aKx(TK)5

=7,

where >0, 0 = o, =2, KeC[R, xR,,R,], 0<1 <7y <--- and
Ty — 00 as kK — 00.

Let hy(t, x) = h(t, x) = |x|. Consider the functions A(?) =e®, a >0;
V (¢, x) = x% Then the sets E, and E, are defined by
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E = {xe Z2CR,,R):x(s) = x¥1),1, = s = 1},
E;= {xe ZC[R,,R]:x%(s)e™ = x*(1)e*, 1y = 5 = t}.

Fort>to éoanderl

D_V(tx(t)) =-— 2 ax*(1) + 2 x(¢) Jt K(t,s)x(s)ds =
= 2V (s, x(z))[—a+ JI K(t,s) ds] , If t#£7,., k=12,..

and for t>¢ = 0 and x€ E,

A D_ V(6 x(1)) + V (6, x(1) D_ A(2) =
= ae®x*(t) + 2 x(1) [— ax(t) + Jl K(1,s) ds] oo
= A(OV(t,x(z))[a_sz J Ksye ' Pas|,

)

if t#7., k=12,..

Moreover,
Vit +0,x(1) — o, x(1)) = (1 - 0,) V(7,, x(7,)) =
=EV(rex(t)), T.=10, x€E;

A+ 0) V(rg+ 0, x(1) — @, x(1.) = (1 - 0 ) 4 (1) V (7, x(7,)) =
=S AM) V(o x(t)), T.>1ty, xeE .
Let the following inequality hold

t
J K(t,s)ds = a.
1/

0

Then, applying Theorem 3.2 (a) for g(¢, #) =0 and B, () = 0, we obtain
that the zero solution of equation (4.1) is uniformly stable.
Let the following inequality hold

t
JK(t,s)ds =a-g, ¢=>0.
h

Applying Theorem 3.2 (b), we obtain that the zero solution of equation
(4.1) is uniformly asymptotically stable.
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If the inequality

! S-9) -
JK(t,s)ez dsgz_Lzﬁ,
f

holds, then the conditions of Theorem 3.5 are satisfied for g(¢, #) =0 and
Br(u) = 0. Hence the zero solution of equation (4.1) is equiasymptotically
stable.
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