Numerical solution of second-order elliptic equations on plane domains
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 2, p. 169-191
@article{M2AN_1991__25_2_169_0,
     author = {Angermann, Lutz},
     title = {Numerical solution of second-order elliptic equations on plane domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {25},
     number = {2},
     year = {1991},
     pages = {169-191},
     zbl = {0717.65082},
     mrnumber = {1097143},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1991__25_2_169_0}
}
Angermann, Lutz. Numerical solution of second-order elliptic equations on plane domains. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 2, pp. 169-191. http://www.numdam.org/item/M2AN_1991__25_2_169_0/

[1] L. Angermann, A mass-lumping semidiscretization of the semiconductor device equations. Part II : Error analysis. COMPEL 8 (1989), no. 2, 84-105. | MR 1020119 | Zbl 0687.65113

[2] K. Baba, M. Tabata, On a conservative upwind finite element scheme for convective diffusion equations. R.A.I.R.O. Analyse numérique 15 (1981), no. 1, 3-25. | Numdam | MR 610595 | Zbl 0466.76090

[3] R. E. Bank, D. J. Rose, Some error estimates for the box method. SIAM J. Num. Anal. 24 (1987), no. 4, 777-787. | MR 899703 | Zbl 0634.65105

[4] P. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Company, Amsterdam, New York - Oxford 1978. | MR 520174 | Zbl 0383.65058

[5] W. Hackbusch, On first and second order box schemes. Computing 41 (1989), 277-296. | MR 993825 | Zbl 0649.65052

[6] B. Heinrich, Finite difference methods on irregular networks. Mathematical Reseach, vol. 33 Akademie-Verlag, Berlin 1987. | MR 1015930 | Zbl 0606.65065

[7] B. Heinrich, Coercive and inverse-isotone discretization of diffusion-convection problems. AdW der DDR, Karl-Weierstrass-Institut fur Mathematik, PREPRINT P-MATH-19/88, Berlin 1988.

[8] T. Ikeda, Maximum pnnciple in finite element models for convection-diffusion phenomena. North-Holland Publishing Company, Amsterdam - New York -Oxford/Kmokumya Comp. Ltd., Tokyo 1983. | MR 683102 | Zbl 0508.65049

[9] B. J. Mccartin, J. R. Caspar, R. E. La Barre, G. A. Peterson, R. H.Hobbs, Steady state numerical analysis of single carrier two dimensional, semiconductor devices using the control area approximation. Proceedings of the NASECODE III conf, 185-190 Boole Press, Dublin 1983.

[10] J. J. H. Miller, On the discretization of the semiconductor device equations in the two-dimensional case. Institute for Numerical and Computational Analysis, Preprint no. 1, Dublin 1986. | Zbl 0663.65128

[11] M. S. Mock, On equations describing steady-state carrier distributions in a semiconductor device. Commun. Pure Appl. Math. 25 (1972), no. 6, 781-792. | MR 323233

[12] M. S. Mock, Analysis of a discretization algorithm for stationary continuity equations in semiconductor device models, I-III. COMPEL 2 (1983), 117-139, 3 (1984), 137-149, 3 (1984), 187-199 | MR 782025 | Zbl 0619.65117

[13] U. Risch, Die hybride upwind-FEM - ein einfaches Verfahren zur Behandlung konvektionsdominanter Randwertprobleme. Wiss Zeitschr. der TU Magdeburg 31 (1987), H 5, 88-94. | MR 951107 | Zbl 0645.76095

[14] H.-G. Roos, Beziehungen zwischen Diskretisierungsverfahren fur Konvektions-Diffusions-Gleichungen und für die Grundgleichungen der inneren Elektronik. Informationen 07-10-86 der Technischen Universität, Dresden 1986.