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SMOOTHING AND INTERPOLATION IN A CONVEX
SUBSET OF A HILBERT SPACE: II.
THE SEMI-NORM CASE (%)

Charles A MICCHELLI ('), Florencio I UTRERAS (?)

Communicated by P J LAURENT

Abstract — We improve upon results of our previous paper on mterpolation subject to convex
constraints In this paper we focus on the case of constrained best wmterpolation when the object
Junction 1s chosen to be || Tx|| % where T 1s a bounded linear operator defined on a Hubert space
X onto another Hilbert space Y with a finite dimensional kernel (We simply say T is correct from
XtoY) We prove that under rather general circumstances this problem can be separated nto first
finding an orthogonal projection onto some constraint set and then solving a finite dimensional
mn-max problem whose saddle point deternunes the solution of our problem

Resume — On presente des resultats permettant d ameliorer des theoremes obtenus dans un
article precedent Dans cet article on etudie le probleme d'interpolation optimale sous contraintes
obtenue quand on mimise une semi-norme || Tx||* Ici T est un operateur hneaire borne et
surjectif defwn dans un espace de Hilbert X dans un autre espace de Hilbert Y ayant un noyau de
dimension fime On demontre que, sous des hypotheses assez génerales, ce probleme peut étre
decompose en une projection orthogonale sur un certain ensemble convexe suwvie de la resolution
d’un probleme de min-max en dimension finie le pownt de selle determnant la solution de notre
probleme

1. INTRODUCTION

Let X, Y be a Hilbert space and T be a bounded hnear operator defined
on X with range Y and a finite dimensional kernel

dim (Ker (7)) < + o0 1.1n
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426 C. A. MICCHELLI, F. I. UTRERAS

For simplicity we say that T is correct from X to Y. Assume that Z is a finite
dimensional Hilbert space, I a bounded linear operator from X into Z, C a
closed convex cone and z°e Z\ {0} a given « data value ».

We are interested in the solution of the Best Interpolation Problem :

p = inf {%l[Tx[lz:xe C,Ix=z°}, (1.2)

where we assume that the data z°is consistent with the constraint cone, that
is, C NI 1(z% # ¢.

In the case that C = X it is well-known that there exists a unique solution
to (1.2) for any z%e Z with C N I~'(z% % ¢ provided that

Ker (T) N Ker (I) = {0}, (1.3)

[2). Moreover, the unique solution to (1.2) which we denote by 0 is
determined by the equation

(T* T)(0) = I*(\) (1.4)

for some \ € Z chosen so that 16 = z°.

Our aim in this paper is to show that under the « interior moment cone »
hypothesis, that is, z° € interior 7(C) of [4], see also [8], and Section 2 the
solution o to (1.2) satisfies the equation

(T* T)(o,) = Tx(T*(A) + &) — i, (1.5)

where A€ Z, i€ Ker (T) are chosen to insure that 7(o.) =z’ and

I, is the orthogonal projection onto some cone K in X, Specifically, we let

P be the orthogonal projection of (X, | . ||,) onto Ker (T) and choose

K= {ueX:S*Su+PueC} (1.6)

where
S=(T"" Pt. (L7
Here we use the notation A' for the pseudoinverse of 4. The operator

Il is now defined to be the orthogonal projection of X onto K relative to
the norm

|x]|2 = || Sx|% + | Px|%, x€X. (1.8)

This result improves upon a previous result of the authors [4], given for
the case 7T = identity, X = Y. In that case o, is the orthogonal projection
onto C of some element in the range of 7*, that is,

o, = P.(I*(N) (1.9)
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INTERPOLATION IN A CONVEX SUBSET 427

where P, is the orthogonal projection of X onto C. Here XN € Z can be
determined as a solution of the finite dimensional minimization problem

d = min {% 1RO - (\ 2% he Z} . (1.10)

As pointed out in [4], the gradient of the objective function in (1.10) is
easily obtained in terms of P.(I*(A)) so that efficient minimization
methods to solve (1.10) are available. In many interesting applications,
however, the introduction of the operator T becomes necessary. In
Section 2 we proceed to study the effect of introducing 7 into the problem.
We prove under the interior data cone condition that the parameter

Ne Z, fieKer (T) in (1.5) can be determined as the saddle point of the
max-min problem

. 1 1
g~ max min {5 (=) + w)|* = 5 1T* ) |2 - <I(p.)—-z°,)\>}
NeZ peKer (T)

(1.11)

—max min {%|u|2—%|HK(I*()\)+M)|2+<)\,z°)} (1.12)

Ae Z peKer(T)

where C* is the conjugate cone of C (relative to || . ||,). Therefore, as in
(1.10), we reduce (1.2) to the solution of a finite dimensional unconstrained
extremal problem. Section 3 contains results concerning smoothing under
convex constraints.

We apply our main characterization for (1.2) to only one model problem
at the end of Section 2. Generally speaking, any application of the general
principle we develop here, for instance, to monotone or convex interpo-
lation or to area-matching of density functions as in [9] require some effort.
For practical reasons this issue deserves more work. Nevertheless, the main
content of our result is to demonstrate how to separate the « global »
convexity constraint in (1.2) embodied by the requirement, x € C, from the
finite linear constraints /x = z° which, in fact, can be large in number. Our
computational experience with the case T = identity in [4] indicates that a
significant reduction of computational cost results by this separation of
constraints.

2. THE CONSTRAINED INTERPOLATION PROBLEM

Let T be a bounded linear operator with domain D (7)) = X and suppose
that R(T), the range of T, is Y. As indicated in the introduction we are
interested in the case 0 = dim (Ker (7)) < + c. Let P be the orthogonal

vol. 25, n® 4, 1991



428 C. A MICCHELLL F I UTRERAS

projection of X onto Ker (7') and denote by P+ the orthogonal projection
onto R(T*) = [Ker (T)]*. Now, let T' be the pseudoinverse of T, i..,
T": R(T) - D(T) is the bounded linear operator defined as x = 7' y
where x has Jeast norm among all v € D(T) such that

ly = To|l =min {|ly - To| :0e D(T)} . @.1)

We list some facts about pseudoinverse which can be found in [7].
First we record the equation

ker (T') = R(T)*, R(T") = ker (T)* (2.2)
and then the useful formula
TT' y =y, yeR(T). 2.3)

It is known that since R(7’) is (a closed subspace of) ¥, T' is a bounded
linear operator. Also, it is important to recall the identities

(' =1 (2.4)
and
(TH* = (T%)". 2.5)
Next, we introduce the operator

S=(1")'P+. 2.6

-’

According to (2.3), applied to the adjoint of Tand y := P+ x € R(T*) we
have

T*Sx=P*x, xeX. 2.7

Hence, Ker (S) = Ker (P*) = Ker (T) and we are led to

PROPOSITION 2.1: Let T be correct from X to Y. Then
G=S*S+P (2.8)

is a bounded linear operator from X into itself which is invertible and has a
dense range.

Proof : Since Ker (S* S) = Ker (S) = Ker (T) which is orthogonal to
Ker (P) = [Ker (T)]*, we conclude that Ker (G) = {0}. Similarly, if
®w € R(G)* then0 = (0,GP * w) = (P 0, S*SP! w)and so P+ w = 0.
Also, since 0 = (0, Gw ) = (0, Pw) we get Po = 0 and therefore o = 0.
Thus we have proved that R(G) = X, as claimed.

M?2AN Modélisation mathématique et Analyse numérique
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INTERPOLATION IN A CONVEX SUBSET 429

Let us now observe that the cone K introduced in (1.7) may be expressed
in the equivalent form

K=G YC). 2.9

Moreover, it is now apparent that the semi-norm | . |, introduced in (1.8) is
in fact a norm since

|x]? < [1Sx]3 + | Px[|5% =0
< Sx=0and Px=0
<> x € Ker (S) N Ker (P)

< x € [Ker (T)]* NKer (T) = {0} .

We require some further facts concerning the operators S and 7.

LEMMA 2.2 : Let T be correct from X to Y. Then for S defined by (2.8) we
have

S*ST*T =T*TS*S = P*

and so, in particular S* S and T* T commute.

Proof : First we note that
S*ST*T =P+ T (T*)! PLT*T

which, on account of the fact that P* is the orthogonal projection
R(T*), becomes

=P(r* T* T
=pPL.

Similarly, we have
T*TS*S = T* TP+ T'(T*)' P .
Since TP+ = T(P' + P) = T this becomes

=T*TT' (T Pt
—(T*TNT*T) =P+

which proves the lemma.
Next we give a useful alternative description of the projection.
LEMMA 2.3: Let T be correct from X to Y. Suppose that C* is the

conjugate cone of C relative to the standard norm on X. Furthermore, denote

vol. 25, n° 4, 1991



430 C. A. MICCHELLI, F. I. UTRERAS

by Ilq- the orthogonal projection of X, relative to the norm (1.8), onto
C*. Then

e(x) + Heo(x)=x, xeX. (2.10)
In other words, K is the conjugate cone of C* in (X, | . |).

Proof : According to our definition u € K if and only if S* Su+ Puec
which is equivalent to

($*Su+Pu,w),, <0, w0eC*

where |x||2 = (x,x), is the original inner product on X. Hence,
u € K if and only if

(Su, Sw) , + (Pu, Po ), <0, weC*.

However, the left hand side of the above inequality is precisely the inner
product of u and o relative to the norm (1.9). This proves the claim (2.10).

We are now ready to show that characterizing the solutions of (1.2) can be
reduced to an existence problem. For this reason we introduce the operator

H:ZxKer (T) - X
defined by
HOp) =T*(\) + 1.

THEOREM 2.4 :-Let T be correci from X io Y. Assumne that ithere exists a
¥ = (A% u% e Z x Ker (T) such that

X% = GH x(H(Y)) Q.11
satisfies both
I(x% =2z° (2.12)
and
PI(H(Y)) = nl. 2.13)

Then x° is the solution to the problem.
p = min {% I Tx|%: x € C,Ix:z} :
Proof : Let us first remark that since ITx(H(y%)) € K we conclude that
0
x € C.

M?AN Modélisation mathématique et Analyse numérique
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INTERPOLATION IN A CONVEX SUBSET 431

Now, consider an arbitrary element w € C such that Jo = z% We will
show that

ITx°) < | To||*.
For this purpose, we use Lemma 2.2 and observe that
T* Tx° = T* TS* ST (H(v")) + T* TPILx(v%)
= P+ IIg(H(Y"))
= Ix(H(Y")) — PTig(H(Y"))
= Hx(H(Y)) — p°.
Therefore we have established that
(TX, To) = (Tx(HH’)) - 1’ o)
and so invoking Lemma 2.3 gives us
= (H(®") — T (H(H)) — 1’ o)
= <I*()\O)’ 0)> - <HC*(H(‘YO))3 (.0)
= (% 2% = (He-(H(), @)
Hence we have obtained the inequality
(TX", Twy = (\%, 2% (2.14)

because I« (H(¥%)) € C *. Moreover, equality holds in (2.14) for o = x°, if
we can demonstrate that

(T (HH), x% =0. (2.15)
For this purpose, we use the definition of x° and note that
(M- (H(¥")), x°)
(STc«(H(¥"), SIx(H("))) + (PHg(H(Y)), PIIx(H()))

(I« (H(Y)), Ux(H(Y")))
=0

since Lemma 2.3 guarantees that K is the conjugate cone of C * relative to
the norm (1.9). Thus we have demonstrated that

(Tx°, Tx% = (A9, 20
and
(TX°, Tw) = | TX°)?,

vol. 25, n" 4, 1991



432 C. A. MICCHELLI, F. I. UTRERAS

for any w e C such that /o = z°% Consequently, the Cauchy-Schwartz

inequality implies that
1Tx°) < || To|

which proves the desired result.
To make use of Theorem 2.4 we consider the following finite dimensional
variational problem. For every A € Z and p € Ker (T) we define

T ) = L [HeeZ* ) + w) 2= 21750012 = (ua 12OV + (2% .
3 3
.17)

Using Lemma 2.3 we first rewrite J in the form

1 1 1
JO ) == [T\ + p|? — 5 [Me(T*N) + ) |P— 5
2 2 2

— s TEN))Y + (A, 2% . (2.18)
Then, using the fact that p € Ker (7)) implies Sp = 0, we get

(m, I*(N)) = (Sw, ST*(N)) + (Pn, PI*(N))
= (Pu, I*(N)) = (p, I*(N))

[T*(N\)]* -

and so

JOn, 1) = |u,|2—% I (T*\) + )2+ (A, 2% . (2.19)

1
2 . 1
Therefore we conclude from (2.19) that J is concave in \, while from (2.17),

we see it convex in m. This leads us to consider the sup-inf problem

g=sup inf JO\ p). (2.20)
peZ peKer (7)

The following lemma clarifies the connection between J and the solution to
(1.2).

LEMMA 2.5: Let T be correct from X to Y. Assume that there exists a
saddle point of J, that is, there is a ¥* = (\°, u%) € Z x Ker (T') such that
JO R =IO\, n) =IO\ ), (A, w)e ZxKer (T). (2.21)
Then v° = (A%, n9) satisfies the hypothesis of Theorem 2.4 and consequently
x* = G (Ixg(H(Y)))
is the unique solution to (1.2).

M2AN Modélisation mathématique et Analyse numérique
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INTERPOLATION IN A CONVEX SUBSET 433

Proof : If (2.21) is satisfied then for any A € Z, V (, 4y J(¥°) = 0, that is,
the directional derivative of J at 4° in the direction of (A, 0) is zero. Using
(2.19) we conclude that

Yooy J(Y) = = (T * () + p0), I*(\) + (A, 2%
=~ ((S* S+ P)Ix(T*(\%) + ), I*(N)) + (N, 2%
= ("= I(GU g (H(Y))), \)

which means that z° = I (GII x(H(¥%))). On the other hand, we also have
for all p € Ker (7)

0= V(O,v-) J('YO)
= (W~ TOx(HEY), ).

Since Ker (7)) = Ker (S) we obtain
0= (p - TL(HH)), w)

and so p’ — M (H (")) € [Ker T]*. In other words,

' = P(Tlg(H(¥"))) (2.22)

which proves the lemma.

In order to complete our characterization of a solution to (1.2) we must
provide conditions under which J has a saddle point. To do this let us recall
the notion of recession direction of a (finite) convex function g : R* - R (cf,,

[51, p. 60).

DEFINITION 2.6: An everywhere finite convex function g defined on
R’ has a recession direction y € R*\ {0} if there exists a constant M € R such
that for any o= 0 one has

glay) =M.

Notice that the convexity of g implies that for any a € R* there exists
M € R such that for any a =0 one has

gx+oy)=sM.

The usefulness of this notion for us rests on the following theorem which
is proved in [5], specifically see Theorems (37.3) and (37.6).

THEOREM 2.7 (¢f. Rockafeller [5]): Let A be a (finite) concave-convex
Sfunction on R™ xR". Either of the following conditions implies that the
saddle value of A exists, that is, infsup A = sup inf A. If both conditions
hold, then A has a saddle point, that is, there is an (x, y) € R™ x R" such that
A(x,y) = inf sup A = sup inf A.

vol. 25, n° 4, 1991



434 C A. MICCHELLL, F 1 UTRERAS

(a) The convex functions A(x, .), for x € R™ have no common direction of
recession.

(b) The convex functions — A(.,y), for y € R" have no common direction
of recession.

With the help of this fact we shall now prove under rather general
conditions the existence of a saddle point of J, that is, the existence of an
extended real number ¢ such that

g = inf sup J(\, )
peKer (T) NeZ 223
=sup inf J(\, n). (2.23)
Ne Z pe Ker (T)
THEOREM 2.8 : Let T be correct from X to Y. Assume that
C NKer (T) NKer (I) = {0} . (2.24)

then the saddle value q exists.

Proof : According to Theorem 2.7, it is sufficient to prove that the convex
functions J(\, .) N € Z have no common direction of recession other than
Zero.

To verify this fact we assume p € Ker T is a recession direction for
J(\, .). Thus there is an M € R such that for o =0

1

§a2|HC*(a_l I*(\) + LL)IZ—% [T*(N) 2 — e, IT* (V)Y + (N 2% <M.

Dividing both sides of this inequality by «® and letting o — co we get
[TIe«(p)] =0 and so p e C. Next we use the fact

JOyaw —T* (V) = =5 [T* )P = a(w I* ) + [1*0)P+ (0,29

is also bounded for all a = 0. Hence we conclude that
(m, I*(\)) =0. (2.25)

Since N\ was arbitrary chosen in Z we conclude /. = 0. In summary, we have
pe C NKer (I) NKer (T) and so by hypothesis p = 0 which completes
the proof.

Our final and main result of this section depends on the following fact :

LEMMA 2.9 : Suppose z°e 1%(C) (= interior 1(C)). Then for any p

lim JO\, p) = — 0 .

A=~ 0

M2AN Modéhisation mathématique et Analyse numérique
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INTFRPOLATION IN A CONVEX SUBSET 435

Proof : Suppose to the contrary that there is a sequence {7\"} cZ,

lim \* = o0, and a constant M such that
k- o

—JN )y =M. (2.26)

Set 8% == A¥/||\¥|| and let {8*'} be a subsequence which converges to some
8° € Z\ {0}. Dividing both sides of (2.26) by ||A\*||> and sending
k' - 00 we conclude from (2.19) that 7*(8%) e C*.

Returning to (2.26), we also have

— (N2 < M- ]

and so (8%, z% = 0 as well. It was shown in [8] that z’ € 7°(C) if and only if
(8:3€Z, (3,z% =0, I*3€ C*} = 0. Therefore it follows that 5*° = 0,
a contradiction which proves the lemma.

This lemma is the last ingredient we need for

THEOREM 2.10: Let T:X —» Y be correct from X to Y, two Hilbert
spaces. Let I:X —Z be a bounded linear operator from X into Z,
dim Z < o0 and C a closed convex cone in X. Suppose further that

C N Ker (T) N Ker (I) = {0} (2.27)

and
22e 1%C). (2.28)

Then there exists ay* = (\, n°%) € Z x Ker (T) such that the unique solution
of the variational problem

p = min {%”Tx”z:xe C,Ix:zo}

is given by
x" = G (Ixg(H(Y"))) (2.29)
where
I(x% =2° (2.30)
and
P (H(Y)) = n. (2.31)

Moreover, ¥° = (\°, u°) is a saddle point of J with saddle value p, that is,

p=JA%p% = min maxJ\, p) =max min J\, ). (2.32)
neKer (T) NeZ NeZ peKer (T

vol 25, n” 4, 1991



436 C A MICCHELLI, F 1 UTRERAS

Proof According to Lemma 2 9, our hypothesis (2 28) implies for any
n € Ker (T), —J(., ) does not have a direction of recession We have
already verified in Theorem 2 8 that condition (2 26) implies the famly of
convex functions J(A), A€ Z does not have a common direction of
recession Hence we have confirmed both a) and b) of Theorem 2 7 This
proves the existence of a saddle pont of J and so Lemma25 and
Theorem 2 4 establishes (2 29) to (2 31) It only remains to establish that
p =J\’, u% which we do next

Recall that since T* TG = T* TS* S = P+ we get
17X = (T* Tx°, x°)
= (P Ix(H®")), G x(H(Y)))
= (P* x(HH®)), Tx(HH"))) (233)
[T (H()|* — | PTL(H())|
| (H(Y") | - |n0)?

On the other hand,
(A% 2% = (I*(\°), GII ((H(¥*))) = (I*(\°), Ix(H(7")))
= (H(®), Tx(HGY))) — (0 T (HH))) (2 34)
I (HG) | = [10)?

and so combining these equations give us

1 1
JOO 8% =5 WP S I EED |+ [T EHED)| - |00
1 2 1
=5 [THE)|* -5 [w]? (235)
1 2
=3 I 7|

which proves the theorem

Remark 2 11 Note that when C = X, the characterization Theorem 29
takes the familar form

T* T(x%) = I1*(\%) + p° (2 36)

where p’e Ker (7) and I*(\°) € Ker (T)* (¢f [2], chapter 5) These
conditions, with the equation 7(x% = z° provide a system of nonsingular
linear  equations for determinmng x*=G( *(A\% + n%  when
Ker (T) NKer (I) = {0} Alternatively, (A% %) can be obtamned as the
saddle point of

M?AN Modelisation mathematique et Analyse numerique
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INTERPOLATION IN A CONVEX SUBSET 437
1 1
i|,L|2—§|1='=(>\)er|2+ %\ . (2.37)

Generally, we can expect that the use of algorithms for determining
saddle points coupled with a numerical method to find I, will lead to an
efficient general purpose numerical method for solving (1.2). However, this
program requires further work for its successful implementation.

As an example of Theorem 2.8 we consider the problem of smooth
monotone interpolation. This leads us, for instance, to the problem

. 1
min { ( (@) dt:ue H}0,1],u() =y,
J0
i=01,.,nu()=0, O0=st=<l, a.e.} (2.38)

where 0 <ty <---<t,=<1. This problem is equivalent, with the replace-
ment v = u', to (1.2) where

(Tv) (1) =v'(t), C= {p:v(t)=0,0=<t=<1,ae },

Iv = (F v() dr, ..., f

n-1

U(l)d[) s 2= (yl“yOa ---ayn_yn—1)5

X=H'0,1], Y=L?%0,1], and Z={?R").

T is correct from X to Y and all other requirements in Theorem 2.8 are
fulfilled. A straightforward computation shows that

(Gf) (1) = Jl G(t, %) f(x)dx, feL0,1],

0

where G (z, x) is the strictly positive kernel

G (1, x) = min (t,x)+%+z+x—%(x2+tz).

Thus the cone K in this case is
K= {g:Gg=0}.

According to Theorem 2.8 the solution of the optimization problem (2.37) is
given as

. 1
Ugp(1) = J G (2, x) Ug(fo) (x) dx
0

for some piecewise linear function f|, with breakpoints at z; € (0, 1). We do
not describe Ilg in detail except to note the following: Given any

vol. 25, n” 4, 1991



438 C. A. MICCHELLI, F. I. UTRERAS

f e L?0, 1], there is a nonnegative measure ny with support on [0, I]
(depending on f) such that

. 1
e (f) (x) = [ G (1, x) dps(2) . (2.38)
J0
The dual extremal problem described in Theorem 2.8 gives information for
finding f, and computing ug, numerically.
As for the reason for equation (2.38), we observe the following general
fact.

LEMMA 2.9: Let K(x,t) be continuous function for x,te€ [0,1] and
suppose there does not exist a nontrivial measure dp(t) such that
1

J K(x,t)dun(x) =0 for all te [0,1] then given any f e L0, 1] there
0

exists a nonnegative measure w, with support on [0, 1] such that

. 1
(lgs f) (1) = J K(x, 1) dpy(x)
0

is the orthogonal projection of L*0, 1] onto the closed cone
. 1
K= {g:geLz[O, 1], J K(x, t)g(t)dta0,0stsl} .
0

Proof : Let ¢° =TI f € K be the best approximation of f in K. Then
. 1
ds, 9) = (f(t) —go(2))a(t)dt =0 whenever g € K. Define the

. 1
set W = %’ f K(x,t)dn(x): p a nonnegative measure}. W is a closed
(Jo

convex cone in L2[0, 1] because any sequence of measures dj., such that the
1

functions | K (x, t) dp.,(x) converge in L2[0, 1] must have bound variation
0

independent of n. As a result, if f—gy,¢ W there would exist an
he L?0,1] such that (g—9gph) <0 while necessarily
1

K(x,t) h(t) dt =0 for all x. But then 4 would be in K which contradicts
0

the definition of g,.

3. BEST CONSTRAINED SMOOTHING

In this section we present a result similar to Theorem 2.8 for smoothing
under convex constraints. We let T, I, X, Y and C be as before and consider
the extremal problem

. 1
py = inf { 5 1 Txl}+ § 12x — 23} 3.
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for p = 0. This problem arises when the data vector is « noisy » hence the
demand that x € C satisfies Ix = z° as in (1.2), would generally lead to an

inappropriate estimate for x. Now, for (3.1) we study the concave-convex
function J,(\, )

1 1
Jp()‘:l-")‘=EIM]Z_EIHK(I*)\+M)|2+
1 1
nz% —— A2 =5 127 3.
e LU £V CE>

where | . | and Ilg are as in the preceding section. This leads us to

THEOREM 3.1: Let T be correct from X to Y and I a bounded linear
operator from X into a finite dimensional Hilbert space Z. Suppose C is a
closed convex cone and z° a data vector in Z such that I-'(z%) N C # & and

C NKer (I) NKer (T) = {0} .

Then for each p =0 there exists a yg = ()\g, pLg) which is a saddle point of
J, and p,, is its corresponding saddle value. Moreover, the unique solution of
(3.1) is given by

x) = G (Ig(H(¥)))) (3.3)
where
P(Tx(H(vy))) = 1’ G4
and
IG0) + %xg = 20 (.5)

Proof : The proof is similar to the proof of Theorem 2.10 and so we shall
only briefly discuss the details centering upon the differences in the proof.
Since

1 1
B0 ) = IO ) =5 N7+ 5 12°0)°

we see that — J,(., p) for each p € Ker (7T) has no direction of recession
and the functions J,(\, .), N € Z have, as with the case p = 0, no common
direction of recession. Thus J, has a saddle point 'yp()\g, pg) € Z x Ker (T)
which we will show satisfies (3.3), (3.4), and (3.5).

First, note that

Vo, (%) = <— 1(G (Ig(v))) +2° % £, >\>
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and
Vo wy J(Y) = () — I (H(¥))), 1) -

This proves (3.4) and (3.5); it remains to show (3.3) solves (3.1).
Let w € C (clearly xg € C), then the equation

T* T(x0) = T (H(Y)) —

gives

I

(T* T(x), @) = (H(Y)) — pp — Hes(H(¥)), ©)

<)\2, I(u> - <HC*(H('y2)), u)) .

Therefore
(TOD), To) +p{I(x) ~ 2% To) = — (Tlcs(H(v))), 0) =0

which establishes the optimality of xg for (3.1). We omit the computation
that verifies that the saddle value of J, is p,,.
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