Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case
M2AN - Modélisation mathématique et analyse numérique, Volume 25 (1991) no. 4, pp. 425-440.
@article{M2AN_1991__25_4_425_0,
     author = {Micchelli, Charles A. and Utreras, Florencio I.},
     title = {Smoothing and interpolation in a convex subset of a {Hilbert} space : {II.} {The} semi-norm case},
     journal = {M2AN - Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {425--440},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {25},
     number = {4},
     year = {1991},
     zbl = {0741.65045},
     mrnumber = {1108584},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1991__25_4_425_0/}
}
TY  - JOUR
AU  - Micchelli, Charles A.
AU  - Utreras, Florencio I.
TI  - Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case
JO  - M2AN - Modélisation mathématique et analyse numérique
PY  - 1991
DA  - 1991///
SP  - 425
EP  - 440
VL  - 25
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1991__25_4_425_0/
UR  - https://zbmath.org/?q=an%3A0741.65045
UR  - https://www.ams.org/mathscinet-getitem?mr=1108584
LA  - en
ID  - M2AN_1991__25_4_425_0
ER  - 
%0 Journal Article
%A Micchelli, Charles A.
%A Utreras, Florencio I.
%T Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case
%J M2AN - Modélisation mathématique et analyse numérique
%D 1991
%P 425-440
%V 25
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%G en
%F M2AN_1991__25_4_425_0
Micchelli, Charles A.; Utreras, Florencio I. Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case. M2AN - Modélisation mathématique et analyse numérique, Volume 25 (1991) no. 4, pp. 425-440. http://archive.numdam.org/item/M2AN_1991__25_4_425_0/

[1] L. D. Irvine, S. P. Marin and P. W. Smith, Constrained interpolation and smoothing, Constr Approx, 2 (1986), 129-152. | MR | Zbl

[2] P. J. Laurent, Approximation et Optimization, Herman, Paris, 1972.

[3] C. A. Micchelli, P. W. Smith, J. Swetits and J. D. Ward, Constrained LP approximation, Constr Approx, 1 (1985), 93-102. | MR | Zbl

[4] C. A. Micchelli and F. Utreras, Smoothing and interpolation in a convex subset of a Hilbert space, SIAM J. Sci. Statist. Comput, 9 (1988), 728-746. | MR | Zbl

[5] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N. J., 1970. | MR | Zbl

[6] F. Utreras, Smoothing noisy data under monotonicity constraints existence, characterization and convergence, rates Numer. Math., 74 (1985), 611-625 | EuDML | MR | Zbl

[7] F. J. Beutler and W. L. Root, The operator pseudoinverse in control and systems identification, in Generalized Inverses and Applications, eds Z. Nashed, Academie Press, New York, 1973. | MR | Zbl

[8] C. K. Chui, F. Deutsch and J. D. Ward, Constrained best approximation in Hilbert space, Constr. Approx., 6 (1990), 35-64. | MR | Zbl

[9] N. Dyn and W. H. Wong, On the characterization of non-negative volume matching surface splines, J. Approx. Theory, 31 (1987), 1-10. | MR | Zbl