A new mixed finite element method for the Timoshenko beam problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 5, p. 561-578
@article{M2AN_1991__25_5_561_0,
     author = {Franca, Leopoldo P. and Loula, Abimael F. D.},
     title = {A new mixed finite element method for the Timoshenko beam problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {25},
     number = {5},
     year = {1991},
     pages = {561-578},
     zbl = {0779.73059},
     mrnumber = {1111655},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1991__25_5_561_0}
}
Franca, Leopoldo P.; Loula, Abimael F. D. A new mixed finite element method for the Timoshenko beam problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 5, pp. 561-578. http://www.numdam.org/item/M2AN_1991__25_5_561_0/

[1] A. F. D. Loula, T. J. R. Hughes, L. P. Franca and L Miranda, Mixed Petrov-Galerkin Method for the Timoshenko Beam, Comput. Methods Appl. Mech. Engrg., 63, 133-154, 1987. | MR 906535 | Zbl 0607.73076

[2] F. Brezzi On the Existence, Uniqueness and Approximation of Saddle-point Problems Arising From Lagrange Multipliers, RAIRO Modél. Math. Anal. Numér., 8, R-2, 129-151, 1974. | Numdam | MR 365287 | Zbl 0338.90047

[3] D. N. Arnold, Discretization by Finite Elements of a Model Parameter Dependent Problem, Numer. Math., 37, 129-151, 1974. | MR 627113 | Zbl 0446.73066

[4] L. P. Francia, New Mixed Finite Element Methods, PhD Dissertation, Stanford University, 1987.

[5] P. G. Ciarlet, The Finite Element Method for Elliptc Problems, North-Holland Publishing Company, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058