On pointwise stability of cubic smoothing splines with nonuniform sampling points
ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 6, pp. 671-692.
@article{M2AN_1991__25_6_671_0,
     author = {Anderssen, R. S. and de Hoog, F. R. and Wahlbin, L. B.},
     title = {On pointwise stability of cubic smoothing splines with nonuniform sampling points},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {671--692},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {25},
     number = {6},
     year = {1991},
     mrnumber = {1135989},
     zbl = {0758.41012},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1991__25_6_671_0/}
}
TY  - JOUR
AU  - Anderssen, R. S.
AU  - de Hoog, F. R.
AU  - Wahlbin, L. B.
TI  - On pointwise stability of cubic smoothing splines with nonuniform sampling points
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1991
SP  - 671
EP  - 692
VL  - 25
IS  - 6
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1991__25_6_671_0/
LA  - en
ID  - M2AN_1991__25_6_671_0
ER  - 
%0 Journal Article
%A Anderssen, R. S.
%A de Hoog, F. R.
%A Wahlbin, L. B.
%T On pointwise stability of cubic smoothing splines with nonuniform sampling points
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1991
%P 671-692
%V 25
%N 6
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1991__25_6_671_0/
%G en
%F M2AN_1991__25_6_671_0
Anderssen, R. S.; de Hoog, F. R.; Wahlbin, L. B. On pointwise stability of cubic smoothing splines with nonuniform sampling points. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 6, pp. 671-692. http://archive.numdam.org/item/M2AN_1991__25_6_671_0/

[1] C. De Boor, A Practical Guide to Splines, Springer, New York, 1978. | MR | Zbl

[2] J. C. Holladay, Smoothest curve approximation, Math. Comp. 11, 1957, 233-243. | MR | Zbl

[3] F. R. De Hoog and R. S. Anderssen, Convergence of kernel functions for cubic smoothing splines on non-equispaced grids, Austral. J. Statist. 30A, 1988, 90-99. | Zbl

[4] C. H. Reinsch, Smoothing by spline functions, Numer. Math. 10, 1967, 177 183. | MR | Zbl

[5] I. J. Schoenberg, Spline functions and the problem of graduation, Proc. Nat. Acad, Sci. 52, 1964, 947-950. | MR | Zbl

[6] B. W. Silverman, Spline smoothing : the equivalent variable kernel method, Ann. Statist. 12, 1984, 898-916. | MR | Zbl

[7] E. Whittaker, On a new method of graduation, Proc. Edinburgh Math. Soc. 41, 1923, 63-75.