@article{M2AN_1991__25_6_783_0, author = {Stephan, E. P. and Suri, M.}, title = {The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {783--807}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {25}, number = {6}, year = {1991}, mrnumber = {1135993}, zbl = {0744.65073}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1991__25_6_783_0/} }
TY - JOUR AU - Stephan, E. P. AU - Suri, M. TI - The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 783 EP - 807 VL - 25 IS - 6 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1991__25_6_783_0/ LA - en ID - M2AN_1991__25_6_783_0 ER -
%0 Journal Article %A Stephan, E. P. %A Suri, M. %T The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 783-807 %V 25 %N 6 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1991__25_6_783_0/ %G en %F M2AN_1991__25_6_783_0
Stephan, E. P.; Suri, M. The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 6, pp. 783-807. http://archive.numdam.org/item/M2AN_1991__25_6_783_0/
[1] On the possibility of adaptive boundary elements, in : Accuracy Estimates and Adaptive Refinements in Finite Element Computations (AFREC), Lisbon, 1984.
, , ,[2] Hierarchical boundary elements. Comput. and Structures, 20 (1985) 151-156. | Zbl
, , ,[3] p-adaptive boundary elements. Internat. J.Numer. Methods Engrg. 23 (1986) 801-829. | Zbl
, ,[4] The p and h-p versions of the finite element method, An Overview. Computer Methods in Applied Mechanics and Engineering 80 (1990) 5-26. | MR | Zbl
, ,[5] Survey lectures on the mathematical foundations of the finite element method, in : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (ed. by A. K. Aziz), Academic Press, New York (1972) 3-359. | MR | Zbl
, ,[6] Error estimates for the combined h and p version of the finite element method. Numer. Math. 37 (1981) 257-277. | MR | Zbl
, ,[7] Implementation of non-homogeneous Dirichleboundary conditions in the p-version of the finite element method. Impact of Computing in Science and Engineering 1 (1989) 36-63. | Zbl
, , ,[8] The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 515-545. | MR | Zbl
, , ,[9] The treatment of nonhomogeneous Dirichlet boundar conditions by the p-version of the finite element method, Num. Math. 55 (1989) 97-121. | MR | Zbl
, ,[10] The h-p version of the finite element method with quasi uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. | Numdam | MR | Zbl
, ,[11] The finite element method for elliptic problems. North Holland Publishing Co, Amsterdam, 1987. | Zbl
,[12] The normal derivative of the double layer potential on polygons and Galerkin approximation. Appl. Anal. 16 (1983) 205-228. | MR | Zbl
, ,[13] The method of Mellin transformation for boundary integral equations on curves with corners, Numerical Solutions of Singular Intégral Equations (ed. A. Gerasoulis, R. Vichnevetsky) IMACS (1984) 95-102.
, ,[14] Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximations, in : Mathematical Models and Methods in Mechanics(1981), W. Fiszdon and K. Wilmânski, editors, Banach Center Publications, Vol. 5, 15, pp. 175-251, PWN-Polish Scientific Publishers, Warsaw (1985). | MR | Zbl
, ,[15] The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984) 1180-1207. | MR | Zbl
,[16] he h-p versions of the finite element method in one dimension. Parts 1-3, Numer. Math. 49 (1986) 577-683. | MR
, ,[17] Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math. 17 (1964) 369-373. | MR | Zbl
, ,[18] Non-Homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin, Heidelberg, New York, 1972. | Zbl
, ,[19] Boundary value problems of elasticity in polyhedra-Singularities and approximation by boundary elements, Ph. D. Thesis, TH Darmstadt (1989).
,[20] Adaptive Boundary Element Methods, in : Boundary Elements 9, Vol. 1 (ed C A. Brebbia, W. L. Wendland, G. Kuhn), Springer-Verlag, Heidelberg (1987) 259-273. | MR
,[21] On the convergence of the p-version of the boundary element Galerkin method, Math. Comp. 52 (1989) 31-48. | MR | Zbl
, ,[22] Remarks to Galerkin and least squaresmethods with finite elements for general elliptic problem. Manuscripta Geodaetica 1 (1976) 93-123. | Zbl
, ,[23] An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18 (1984) 183-219. | MR | Zbl
, ,[24] A hypersingular boundary integral method for two-dimensional screen and crack problem, Arch. Rational Mech. Anal. 112 (1990) 363-390. | MR | Zbl
, ,[25] Interpolation Theory, Function Space, Differential Operators. North-Holland Publishing Co., Amsterdam, 1987. | MR | Zbl
,[26] On some mathematical aspects of boundary element methods for elliptic problems, in : J. Whiteman, editor, Mathematics of Finite Elements and Applications V, pp. 193-227, Academic press, London, 1985. | MR | Zbl
,[27] Splines versus trigonometrie polynomials, h-versus p-version in 2D boundary integral methods. In D. Griffïths, R. Mitchell eds., Dundee Biennial Conference on Numerical Analysis, 1985. 25, n° 6, 1991. | Zbl
,