Approximation and/or construction of curves by minimization methods with or without constraints
ESAIM: Modélisation mathématique et analyse numérique, Topics in computer aided geometric design , Tome 26 (1992) no. 1, pp. 211-232.
@article{M2AN_1992__26_1_211_0,
     author = {Bercovier, M. and Jacobi, A.},
     title = {Approximation and/or construction of curves by minimization methods with or without constraints},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {211--232},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {26},
     number = {1},
     year = {1992},
     mrnumber = {1155009},
     zbl = {0801.65014},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1992__26_1_211_0/}
}
TY  - JOUR
AU  - Bercovier, M.
AU  - Jacobi, A.
TI  - Approximation and/or construction of curves by minimization methods with or without constraints
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1992
SP  - 211
EP  - 232
VL  - 26
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1992__26_1_211_0/
LA  - en
ID  - M2AN_1992__26_1_211_0
ER  - 
%0 Journal Article
%A Bercovier, M.
%A Jacobi, A.
%T Approximation and/or construction of curves by minimization methods with or without constraints
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1992
%P 211-232
%V 26
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1992__26_1_211_0/
%G en
%F M2AN_1992__26_1_211_0
Bercovier, M.; Jacobi, A. Approximation and/or construction of curves by minimization methods with or without constraints. ESAIM: Modélisation mathématique et analyse numérique, Topics in computer aided geometric design , Tome 26 (1992) no. 1, pp. 211-232. http://archive.numdam.org/item/M2AN_1992__26_1_211_0/

[1] Babuska, B. A. Szabo & I. N. Katz (1981), The p-version of the Finite Element Method, SIAM J. Numer. Anal, 18, pp. 515-545. | MR | Zbl

[2] A. Ball (1984), Reparametrization and Its Application in CAGD, Internat. J. Numer. Methods Engrg., Vol. 20, pp. 197-216, John Wiley & Sons. | Zbl

[3] P. G. Ciarlet (1982), Introduction à l'Analyse Numérique Matricielle et à l'Optimisation, Masson, Paris, English translation (1989), Cambridge University Press. | Zbl

[4] L. Dannenberg, H. Nowacki (1985), Approximate Conversion of Surface Representations with Polynomials Bases, CAGD, 2, pp. 123-132. | MR | Zbl

[5] G. Farin (1988), Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, Inc., Boston. | MR | Zbl

[6] R. J. Goult (1990), Parametric Curves and Surface Approximation, in Mathematics of Surfaces III, éd. Handscomb, D. C, Oxford University Press. | Zbl

[7] G. Hölzle (1983), Knot Placement for Piecewise Polynomial Approximation of Curves, Comput. Aided Design, 15, pp. 295-296.

[8] J. Hoschek (1985), Offset Curves in the Plane, Comput. Aided Design, 4, pp. 59-66. | MR | Zbl

[9] J. Hoschek (1987), Approximation Conversion of Spline Curves, Comput. Aided Geom. Design, 17, pp. 77-82. | MR | Zbl

[10] J. Hoschek (1988), Spline Approximation of Offset Curves, Comput. Aided Geom. Design, 5, pp. 33-40. | MR | Zbl

[11] J. Hoschek (1988), Intrinsic Parametrization for Approximation, Comput. Aided Geom. Design, 5, pp. 27-31. | MR | Zbl

[12] J. Hoschek, F. J. Schneider, P. Wassum (1988), Optimal Approximation Conversion of Spline Surfaces, Comput. Aided Design, 20, pp. 457-483. | Zbl

[13] M. A. Lachance (1988), Chebyshev Economisation for Parametric Surfaces, Comput. Aided Geom. Design, 5, pp. 195-208. | MR | Zbl

[14] L. D. Landau, E. M. Lifshitz (1959), Mechanics, Pergamon Press, Oxford, Ed. 3. | MR

[15] N. Luscher (1988), The Bernstein-Bézier Technique in the Finite Element Method, Exemplary for the Univariate Case, Technical Report from the University of Braunschweig.

[16] H. Nowacki, L. Dingyuan, L. Xinmin (1990), Fairing Bézier Curves With Constraints, Comput. Aided Geom. Design, 7, pp. 43-55. | MR | Zbl

[17] C. Zienkiewicz (1977), The Finite Element Method in Engineering Science, McGraw-Hill, London. | Zbl