@article{M2AN_1992__26_1_95_0, author = {Chuang, J.-H. and Hoffmann, Ch. M.}, title = {Curvature computations on surfaces in $n$-space}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {95--112}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {1}, year = {1992}, mrnumber = {1155002}, zbl = {0752.65104}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1992__26_1_95_0/} }
TY - JOUR AU - Chuang, J.-H. AU - Hoffmann, Ch. M. TI - Curvature computations on surfaces in $n$-space JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 95 EP - 112 VL - 26 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1992__26_1_95_0/ LA - en ID - M2AN_1992__26_1_95_0 ER -
%0 Journal Article %A Chuang, J.-H. %A Hoffmann, Ch. M. %T Curvature computations on surfaces in $n$-space %J ESAIM: Modélisation mathématique et analyse numérique %D 1992 %P 95-112 %V 26 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1992__26_1_95_0/ %G en %F M2AN_1992__26_1_95_0
Chuang, J.-H.; Hoffmann, Ch. M. Curvature computations on surfaces in $n$-space. ESAIM: Modélisation mathématique et analyse numérique, Topics in computer aided geometric design , Tome 26 (1992) no. 1, pp. 95-112. http://archive.numdam.org/item/M2AN_1992__26_1_95_0/
[1] An Algorithm for Piecewise Linear Approximation of Implicity Defined 2-Dimensional Surfaces, SIAM J. Num. Anal. 24, 452-469. | MR | Zbl
and (1987),[2] Gröbner Bases : An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N.L. Bose, éd., D. Reidel Publishing Co., Dordrecht, Holland; 184-232. | MR | Zbl
(1985),[3] Algebraic Methods for Geometric Reasoning, Ann. Rev. Comp. Sci, 3, 85-120. | MR
, and (1988),[4] On the Theory of Elimination, Cambridge and Dublin Math. J. 3, 116-120.
(1848),[5] Base Points, Resultants, and the Implicit Representation of Rational Surfaces, PhD Diss., Comp. Sci., Univ. Waterloo, Canada.
(1990),[6] Variable Radius Blending with Cyclides, in Geometric Modeling for Product Engineering, K. Preiss, J. Turner, M.Wozny, eds., North Holland, 39-58.
, (1990),[7] Constant Scallop Height Tool Path Generation, Rept. UUCS-89-011, Comp. Sci., Univ. Utah.
, (1989),[8] Surface Approximations in Geometric Modeling, PhD Diss., Comp. Sci., Purdue University.
(1990),[9] On Local Implicit Approximation and lts Applications, ACM Trans. Graphics 8, 298-324. | Zbl
and (1989),[10] Computing offsets of B-spline curves, Comput. Aided Design 19, 305-309. | Zbl
(1987),[11] A Geometric Investigation of the Skeleton of CSG Objects, Report CSD-TR-955, Comp. Sci., Purdue Univ.
and (1990),[12] The Approximation of Nondegenerate Offset Surfaces, Comp. Aided Geom. Design 3, 15-43. | Zbl
(1986),[13] Some Analytic and Algebraic Properties of Plane Offset Curves, Rept. RC 14364, IBM Yorktown Heights. | MR
and (1989),[14] Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publ., San Mateo, Cal.
(1989),[15] A Dimensionality Paradigm for Surface Interrogation, to appear in Comput. Aided Geom. Design. | MR | Zbl
(1990),[16] Algebraic and Numerical Techniques for Offsets and Blends, in Computations of Curves and Surfaces, W. Dahmen, M. Gasca,C. Micchelli, eds., Kluwer Acad. Publ., 499-528. | MR | Zbl
(1990),[17] Programming with Equations, ACM Trans. Progr. Lang 4, 83-112. | Zbl
and (1982),[18] Offset curves in the plane, Comput. Aided Design 17, 11-82.
(1985),[19] Spline approximation of offset curves, Comput. Aided Geom. Design 5, 33-40. | MR | Zbl
(1988),[20] A geometrical method for smooth joining and interpolation of curves and surfaces, Comput. Aided Geom. Design 7. | MR
, , (1990),[21] Elementary Differential Geometry, Academic Press. | MR | Zbl
(1966),[22] Offset approximation of uniform B-splines, Comput. Aided Design 20, 411-414. | Zbl
(1988),[23] Exact second order continuous interactive surface blending with variable sweep Geometric modeling, J. Offshore Mech. Aretic Engrg.
(1988),[24] A Simple Practical Criterion to Guarantee Second-Order Smoothness of Blend Surfaces, Proc. 1989 ASME Design Autom. Conf-, Montreal, Canada.
and (1989),[25] Offsetting operationsin solid modeling, Comput. Aided Geom. Design 3, 129-148. | Zbl
, (1986),[26] Offsetting in geometric modeling, Comput. Aided Design 20, 67-74. | Zbl
, , (1988),