Analysis of domain decomposition for non symmetric problems : application to the Navier-Stokes equations
ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 2, pp. 289-307.
@article{M2AN_1992__26_2_289_0,
     author = {Sonke, L.},
     title = {Analysis of domain decomposition for non symmetric problems : application to the {Navier-Stokes} equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {289--307},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {26},
     number = {2},
     year = {1992},
     mrnumber = {1153003},
     zbl = {0739.76056},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1992__26_2_289_0/}
}
TY  - JOUR
AU  - Sonke, L.
TI  - Analysis of domain decomposition for non symmetric problems : application to the Navier-Stokes equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1992
SP  - 289
EP  - 307
VL  - 26
IS  - 2
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1992__26_2_289_0/
LA  - en
ID  - M2AN_1992__26_2_289_0
ER  - 
%0 Journal Article
%A Sonke, L.
%T Analysis of domain decomposition for non symmetric problems : application to the Navier-Stokes equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1992
%P 289-307
%V 26
%N 2
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1992__26_2_289_0/
%G en
%F M2AN_1992__26_2_289_0
Sonke, L. Analysis of domain decomposition for non symmetric problems : application to the Navier-Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 2, pp. 289-307. http://archive.numdam.org/item/M2AN_1992__26_2_289_0/

[1] R. Glowinski, J. Periaux and Q. V. Dihn, Domain Decomposition Methods for Nonlinear Problems in Fluid Dynamics, INRIA report 147, July 1982. | Zbl

[2] R. Glowinski and M. F. Wheeler, Domam Decomposition and Mixed Finite Element Methods for Elliptic Problems, Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Paris, January 1987, SIAM 1988. | MR | Zbl

[3] T. F. Chan, Analysis of preconditioners for domain decomposition, SIAM J. Numer. Anal., 24/2, 1987. | MR | Zbl

[4] T. F. Chan and D. C. Resasco, A Framework for Analysis and Construction fo Domain Decomposition Preconditioners, Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Paris, January 1987, SIAM 1988. | Zbl

[5] L. Sonke, P. Le Quére and Ta Phuoc Loc, Domain decomposition and multigradient methods for the Navier-Stokes equations, Proc. 6th. International Conference on Numerical Methods in Laminar and Turbulent Flow, Swansea, U.K. July 1989. | Zbl

[6] K. Miller, Numerical analogs to the Schwarz alternating procedure, Numer. Math. 1965. | MR | Zbl

[7] L. Sonké, Solution algorithmique de certaines équations aux dérivées partielles non symétriques : application aux équations de Navier-Stokes, in preparation.

[8] R. Dautray and J. L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, Paris 1985. | Zbl

[9] R. Temam, Navier-Stokes equations, North Holland, 1977. | MR | Zbl

[10] L. Schwartz, Théorie des distributions, Hermann, Paris, 1957. | MR | Zbl

[11] P. S. Vassilevski, Poincaré-Steklov operators for elliptic difference problems, C. R, Acad. Bulgare Sci., 38, no. 5, 543-546, 1985. | MR | Zbl

[12] R. Glowinski, Numerical Methods for nonlinear variational problems, Springer, 1984. | MR | Zbl

[13] C. G. Speziale, On the Advantages of the Vorticity-Velocity Formulation of the Equations of Fluid Dynamics, J. Comp. Phys. 73, 476-480, 1987. | Zbl

[14] H. F. Fasel, Numerical solution of the complete Navier-Stokes equations for the simulation of unsteady flows. Approximation Methods For Navier-Stokes Problem, Proc. Paderborn, Germany, 177-191, Springer-Verlag, 1979. | MR | Zbl

[15] L. Sonké, P. Le Quéré and Ta Phuoc Loc, Domain decomposition and Velocity-vorticity formulation for fluids flows in multiply-connected regions, in preparation.

[16] J. M. Vanel, R. Peyret and P. Bontoux, A pseudo-spectral solution of vorticity-stream function equation using the influence matrix technique, Numer. Meth. Fluid Dynamics II, 463-472, Clarendon Press, Oxford, 1986. | Zbl

[17] R. Peyret and T. D. Taylor, Computational methods for fluid flow, Springer-Verlag, 1985. | MR | Zbl

[18] P. A. Raviart and J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris, 1984. | Zbl